Formation of the mutagenic DNA lesion 1,N2-ethenoguanine induced by heated cooking oil and identification of causative agents

Author:

Kasai HiroshiORCID,Kawai Kazuaki

Abstract

Abstract Background The DNA-damaging compounds in heated cooking oil were identified as guanosine adducts. Heated vegetable oil was subjected to deep-frying conditions at 170 °C for 45 min, reacted with isopropylidene guanosine (ipG) at pH 7.4, and the resulting compounds were separated by high-performance liquid chromatography (HPLC). Results Two adducts, 8-hydroxy-ipG and 1,N2-etheno-ipG, were identified in the reaction mixture. One of the major components in heated cooking oil, 2,4-heptadienal (HDE), efficiently produced etheno-ipG from ipG in the presence of tBuOOH. An oxidized HDE solution was fractionated using HPLC to identify causative agents, and each fraction was tested for etheno-ipG formation. In addition to the known lipid peroxidation product, 4,5-epoxy-2-heptenal, two unknown polar components with potent etheno-ipG formation activity were discovered. Based on Mass and UV spectra, their structures were identified as 6-oxo- and 6-hydroxy-2,4-HDE. Similarly, 6-oxo- and 6-hydroxy-2,4- decadienal (DDE) were formed from 2,4-DDE. Significant amounts of 6-oxo- and 6-hydroxy-2,4-alkadienal were detected in the heated cooking oil. These compounds induced the formation of 1,N2-ethenoguanine in nucleosides and DNA, especially in the presence of tBuOOH. Moreover, the formation of 6-oxo- and 6-OH-HDE from 2,4-HDE was accelerated in the presence of hemin and tBuOOH. Conclusion The results suggest that these compounds are not only generated during the oil heating process but also produced from 2,4-alkadienal through digestion under normal physiological conditions, especially after ingesting heme- and alkyl-OOH-containing diets. Moreover, these compounds can be formed within cells under oxidative stress, potentially linking them to gastrointestinal carcinogenesis.

Publisher

Springer Science and Business Media LLC

Subject

Environmental Science (miscellaneous),Genetics,Social Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3