Author:
Kawada Taishu,Kino Katsuhito,Tokorodani Kyousuke,Anabuki Ryuto,Morikawa Masayuki,Kobayashi Takanobu,Ohara Kazuaki,Ohshima Takayuki,Miyazawa Hiroshi
Abstract
Abstract
Urea (Ua) is produced in DNA as the result of oxidative damage to thymine and guanine. It was previously reported that Klenow fragment (Kf) exo− incorporated dATP opposite Ua, and that DNA polymerase β was blocked by Ua. We report here the following nucleotide incorporations opposite Ua by various DNA polymerases: DNA polymerase α, dATP and dGTP (dATP > dGTP); DNA polymerase δ, dATP; DNA polymerase ζ, dATP; Kf exo−, dATP; Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4), dGTP and dATP (dGTP > dATP); and DNA polymerase η, dCTP, dGTP, dATP, and dTTP (dCTP > dGTP > dATP > dTTP). DNA polymerases β and ε were blocked by Ua. Elongation by DNA polymerases δ and ζ stopped after inserting dATP opposite Ua. Importantly, the elongation efficiency to full-length beyond Ua using DNA polymerase η and Dpo4 were almost the same as that of natural DNA.
Graphical abstract
Publisher
Springer Science and Business Media LLC
Subject
Environmental Science (miscellaneous),Genetics,Social Psychology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献