A novel clinical model for predicting malignancy of solitary pulmonary nodules: a multicenter study in chinese population

Author:

He Xia,Xue Ning,Liu Xiaohua,Tang Xuemiao,Peng Songguo,Qu Yuanye,Jiang Lina,Xu Qingxia,Liu Wanli,Chen ShulinORCID

Abstract

Abstract Background This study aimed to establish and validate a novel clinical model to differentiate between benign and malignant solitary pulmonary nodules (SPNs). Methods Records from 295 patients with SPNs in Sun Yat-sen University Cancer Center were retrospectively reviewed. The novel prediction model was established using LASSO logistic regression analysis by integrating clinical features, radiologic characteristics and laboratory test data, the calibration of model was analyzed using the Hosmer-Lemeshow test (HL test). Subsequently, the model was compared with PKUPH, Shanghai and Mayo models using receiver-operating characteristics curve (ROC), decision curve analysis (DCA), net reclassification improvement index (NRI), and integrated discrimination improvement index (IDI) with the same data. Other 101 SPNs patients in Henan Tumor Hospital were used for external validation cohort. Results A total of 11 variables were screened out and then aggregated to generate new prediction model. The model showed good calibration with the HL test (P = 0.964). The AUC for our model was 0.768, which was higher than other three reported models. DCA also showed our model was superior to the other three reported models. In our model, sensitivity = 78.84%, specificity = 61.32%. Compared with the PKUPH, Shanghai and Mayo models, the NRI of our model increased by 0.177, 0.127, and 0.396 respectively, and the IDI changed − 0.019, -0.076, and 0.112, respectively. Furthermore, the model was significant positive correlation with PKUPH, Shanghai and Mayo models. Conclusions The novel model in our study had a high clinical value in diagnose of MSPNs.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China Stem Cell and Translational Research

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3