Development and validation of a risk prediction score for patients with nasopharyngeal carcinoma

Author:

Xue Ning,Ou Guoping,Ma Weiguo,Jia Lina,Sheng Jiahe,Xu Qingxia,Liu Yubo,Jia MiaomiaoORCID

Abstract

Abstract Background We aimed to develop and validate a predictive model for the overall survival (OS) of patients with nasopharyngeal carcinoma (NPC). Methods Overall, 519 patients were retrospectively reviewed in this study. In addition, a random forest model was used to identify significant prognostic factors for OS among NPC patients. Then, calibration plot and concordance index (C-index) were utilized to evaluate the predictive accuracy of the nomogram model. Results We used a random forest model to select the three most important features, dNLR, HGB and EBV DNA, which were significantly associated with the OS of NPC patients. Furthermore, the C-index of our model for OS were 0.733 (95% CI 0.673 ~ 0.793) and 0.772 (95% CI 0.691 ~ 0.853) in the two cohorts, which was significantly higher than that of the TNM stage, treatment, and EBV DNA. Based on the model risk score, patients were divided into two groups, associated with low-risk and high-risk. Kaplan–Meier curves demonstrated that the two subgroups were significantly associated with OS in the primary cohort, as well as in the validation cohort. The nomogram for OS was established using the risk score, TNM stage and EBV DNA in the two cohorts. The nomogram achieved a higher C-index of 0.783 (95% CI 0.730 ~ 0.836) than that of the risk score model 0.733 (95% CI 0.673 ~ 0.793) in the primary cohort (P = 0.005). Conclusions The established risk score model and nomogram resulted in more accurate prognostic prediction for individual patient with NPC.

Funder

Science and Technology Department of Henan Province

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3