SHC4 promotes tumor proliferation and metastasis by activating STAT3 signaling in hepatocellular carcinoma

Author:

Zhang Xin,Zhang Hongwei,Liao Zhibin,Zhang Jiacheng,Liang Huifang,Wang Weixing,Yu Jia,Dong KeshuaiORCID

Abstract

Abstract Background The Src homology and collagen 4 (SHC4) is an important intracellular adaptor protein that has been shown to play a pro-cancer role in melanoma and glioma. However, the biological function and detailed mechanisms of SHC4 in hepatocellular carcinoma progression are unclear. This study aimed to evaluate the potential prognostic and treatment value of SHC4 in patients with HCC. Methods The expression status of SHC4 in HCC tissues were investigated by immunohistochemistry and western blotting. Clinical significance of SHC4 was evaluated in a large cohort of HCC patients. The effects of SHC4 repression or overexpression on migration, invasion, and tumor growth were detected by colony formation assay, wound healing, transwell assays, and xenograft assay. Cell cycle and EMT-related proteins were detected by western blotting and immunofluorescence. In addition, the molecular regulation between SHC4 and STAT3 signaling in HCC were discovered by western blotting, immunofluorescence and xenograft assay. Results SHC4 was overexpressed in HCC compared to adjacent normal liver tissues and increased SHC4 expression was associated with high AFP level, incomplete tumor encapsulation, poor tumor differentiation and poor prognosis. SHC4 was shown to enhance cell proliferation, colony formation, cells migration and invasion in vitro, and promotes cell cycle progression and EMT process in HCC cells. Tumor xenograft model assay confirmed the oncogenic role of SHC4 in tumorigenicity in nude mice. Moreover, activation of STAT3 signaling was found in the SHC4 overexpressed HCC cells and HCC tissues. Further intervention of STAT3 confirmed STAT3 as an important signaling pathway for the oncogenic role of SHC4 in HCC. Conclusions Together, our results reveal that SHC4 activates STAT3 signaling to promote HCC progression, which may provide new clinical ideas for the treatment of HCC.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3