Deciphering STAT3 signaling potential in hepatocellular carcinoma: tumorigenesis, treatment resistance, and pharmacological significance

Author:

Hashemi Mehrdad,Sabouni Eisa,Rahmanian Parham,Entezari Maliheh,Mojtabavi Mahsa,Raei Behnaz,Zandieh Mohammad Arad,Behroozaghdam Mitra,Mirzaei Sepideh,Hushmandi Kiavash,Nabavi Noushin,Salimimoghadam Shokooh,Ren Jun,Rashidi Mohsen,Raesi Rasoul,Taheriazam Afshin,Alexiou Athanasios,Papadakis Marios,Tan Shing Cheng

Abstract

AbstractHepatocellular carcinoma (HCC) is considered one of the greatest challenges to human life and is the most common form of liver cancer. Treatment of HCC depends on chemotherapy, radiotherapy, surgery, and immunotherapy, all of which have their own drawbacks, and patients may develop resistance to these therapies due to the aggressive behavior of HCC cells. New and effective therapies for HCC can be developed by targeting molecular signaling pathways. The expression of signal transducer and activator of transcription 3 (STAT3) in human cancer cells changes, and during cancer progression, the expression tends to increase. After induction of STAT3 signaling by growth factors and cytokines, STAT3 is phosphorylated and translocated to the nucleus to regulate cancer progression. The concept of the current review revolves around the expression and phosphorylation status of STAT3 in HCC, and studies show that the expression of STAT3 is high during the progression of HCC. This review addresses the function of STAT3 as an oncogenic factor in HCC, as STAT3 is able to prevent apoptosis and thus promote the progression of HCC. Moreover, STAT3 regulates both survival- and death-inducing autophagy in HCC and promotes cancer metastasis by inducing the epithelial–mesenchymal transition (EMT). In addition, upregulation of STAT3 is associated with the occurrence of chemoresistance and radioresistance in HCC. Specifically, non-protein-coding transcripts regulate STAT3 signaling in HCC, and their inhibition by antitumor agents may affect tumor progression. In this review, all these topics are discussed in detail to provide further insight into the role of STAT3 in tumorigenesis, treatment resistance, and pharmacological regulation of HCC. Graphical Abstract

Funder

Projekt DEAL

Ministry of Higher Education, Malaysia

Universiti Kebangsaan Malaysia

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3