Author:
Lu Zekun,Hu Qiangsheng,Qin Yi,Yang Hao,Xiao Bingkai,Chen Weibo,Ji Shunrong,Zu Guangchen,Wang Zhiliang,Fan Guixiong,Xu Xiaowu,Chen Xuemin
Abstract
Abstract
Background
As an oncogene, SETD8 can promote tumour growth and tumour cell proliferation. This study aims to reveal the relationship between SETD8 and ferroptosis in pancreatic cancer and its role in pancreatic cancer to provide a possible new direction for the comprehensive treatment of pancreatic cancer.
Methods
The downstream targets were screened by RNA sequencing analysis. Western blot, Real-time Quantitative PCR (qPCR) and immunohistochemistry showed the relationship between genes. Cell proliferation analysis and cell metabolite analysis revealed the function of genes. Chromatin immunoprecipitation (CHIP) assays were used to study the molecular mechanism.
Results
The potential downstream target of SETD8, RRAD, was screened by RNA sequencing analysis. A negative correlation between SETD8 and RRAD was found by protein imprinting, Real-time Quantitative PCR (qPCR) and immunohistochemistry. Through cell proliferation analysis and cell metabolite analysis, it was found that RRAD can not only inhibit the proliferation of cancer cells but also improve the level of lipid peroxidation of cancer cells. At the same time, chromatin immunoprecipitation analysis (CHIP) was used to explore the molecular mechanism by which SETD8 regulates RRAD expression. SETD8 inhibited RRAD expression.
Conclusions
SETD8 interacts with the promoter region of RRAD, which epigenetically silences the expression of RRAD to reduce the level of lipid peroxidation in pancreatic cancer cells, thereby inhibiting ferroptosis in pancreatic cancer cells and resulting in poor prognosis of pancreatic cancer.
Funder
the National Natural Science Foundation of China
Applied Basic Research of Changzhou Technology Bureau
Major Science and Technology Project of Changzhou Health Commission
The “Six One Project” top-notch talent research project of high-level health talents of Jiangsu Provincial Health Commission
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献