SETD8 inhibits ferroptosis in pancreatic cancer by inhibiting the expression of RRAD

Author:

Lu Zekun,Hu Qiangsheng,Qin Yi,Yang Hao,Xiao Bingkai,Chen Weibo,Ji Shunrong,Zu Guangchen,Wang Zhiliang,Fan Guixiong,Xu Xiaowu,Chen Xuemin

Abstract

Abstract Background As an oncogene, SETD8 can promote tumour growth and tumour cell proliferation. This study aims to reveal the relationship between SETD8 and ferroptosis in pancreatic cancer and its role in pancreatic cancer to provide a possible new direction for the comprehensive treatment of pancreatic cancer. Methods The downstream targets were screened by RNA sequencing analysis. Western blot, Real-time Quantitative PCR (qPCR) and immunohistochemistry showed the relationship between genes. Cell proliferation analysis and cell metabolite analysis revealed the function of genes. Chromatin immunoprecipitation (CHIP) assays were used to study the molecular mechanism. Results The potential downstream target of SETD8, RRAD, was screened by RNA sequencing analysis. A negative correlation between SETD8 and RRAD was found by protein imprinting, Real-time Quantitative PCR (qPCR) and immunohistochemistry. Through cell proliferation analysis and cell metabolite analysis, it was found that RRAD can not only inhibit the proliferation of cancer cells but also improve the level of lipid peroxidation of cancer cells. At the same time, chromatin immunoprecipitation analysis (CHIP) was used to explore the molecular mechanism by which SETD8 regulates RRAD expression. SETD8 inhibited RRAD expression. Conclusions SETD8 interacts with the promoter region of RRAD, which epigenetically silences the expression of RRAD to reduce the level of lipid peroxidation in pancreatic cancer cells, thereby inhibiting ferroptosis in pancreatic cancer cells and resulting in poor prognosis of pancreatic cancer.

Funder

the National Natural Science Foundation of China

Applied Basic Research of Changzhou Technology Bureau

Major Science and Technology Project of Changzhou Health Commission

The “Six One Project” top-notch talent research project of high-level health talents of Jiangsu Provincial Health Commission

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3