DeepPIG: deep neural network architecture with pairwise connected layers and stochastic gates using knockoff frameworks for feature selection

Author:

Oh Euiyoung,Lee Hyunju

Abstract

AbstractSelecting relevant feature subsets is essential for machine learning applications. Among the feature selection techniques, the knockoff filter procedure proposes a unique framework that minimizes false discovery rates (FDR). However, employing a deep neural network architecture for a knockoff filter framework requires higher detection power. Using the knockoff filter framework, we present a Deep neural network with PaIrwise connected layers integrated with stochastic Gates (DeepPIG) for the feature selection model. DeepPIG exhibited better detection power in synthetic data than the baseline and recent models such as Deep feature selection using Paired-Input Nonlinear Knockoffs (DeepPINK), Stochastic Gates (STG), and SHapley Additive exPlanations (SHAP) while not violating the preselected FDR level, especially when the signal of the features were weak. The selected features determined by DeepPIG demonstrated superior classification performance compared with the baseline model in real-world data analyses, including the prediction of certain cancer prognosis and classification tasks using microbiome and single-cell datasets. In conclusion, DeepPIG is a robust feature selection approach even when the signals of features are weak. Source code is available at https://github.com/DMCB-GIST/DeepPIG.

Funder

Institute for Information and Communications Technology Promotion

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3