Abstract
Abstract
Background
Perinatal blood including umbilical cord blood and placental blood are splendid sources for allogeneic NK cell generation with high cytotoxicity of combating pathogenic microorganism and malignant tumor. Despite the generation of NK cells from the aforementioned perinatal blood, yet the systematical and detailed information of the biological and transcriptomic signatures of UC-NKs and P-NKs before large-scale clinical applications in disease remodeling is still largely obscure.
Methods
Herein, we took advantage of the “3IL”-based strategy for high-efficient generation of NK cells from umbilical cord blood and placental blood (UC-NKs and P-NKs), respectively. On the one hand, we conducted flow cytometry (FCM) assay and coculture to evaluate the subpopulations, cellular vitality and cytotoxic activity of the aforementioned NK cells. On the other hand, with the aid of RNA-SEQ and multiple bioinformatics analyses, we further dissected the potential diversities of UC-NKs and P-NKs from the perspectives of transcriptomes.
Results
On the basis of the “3IL” strategy, high-efficient NKs were generated from mononuclear cells (MNCs) in perinatal blood. P-NKs revealed comparable ex vivo expansion but preferable activation and cytotoxicity upon K562 cells over UC-NKs. Both of the two NKs showed diversity in cellular vitality and transcriptome including apoptotic cells, cell cycle, gene expression profiling and the accompanied multifaceted biological processes.
Conclusions
Our data revealed the multifaceted similarities and differences of UC-NKs and P-NKs both at the cellular and molecular levels. Our findings supply new references for allogeneic NK cell-based immunotherapy in regenerative medicine and will benefit the further exploration for illuminating the underlying mechanism as well.
Funder
Science and Technology Projects of Guizhou Province
the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences
Natural Science Foundation of Jiangxi Province
The 2021 Central-Guided Local Science and Technology Development Fund
the project Youth Fund supported by Major Science and Technology Program of Hainan Province
Natural Science Foundation of Hainan Province
National Natural Science Foundation of China
project of Hainan Clinical Research Center
project supported by Hainan Province Clinical Medical Center
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference35 articles.
1. Zhang L, Liu M, Yang S, Wang J, Feng X, Han Z. Natural killer cells: of-the-shelf cytotherapy for cancer immunosurveillance. Am J Cancer Res. 2021;11(4):1770–91.
2. Liu M, Meng Y, Zhang L, Han Z, Feng X. High-efficient generation of natural killer cells from peripheral blood with preferable cell vitality and enhanced cytotoxicity by combination of IL-2, IL-15 and IL-18. Biochem Biophys Res Commun. 2021;534:149–56.
3. Xu J, Niu T. Natural killer cell-based immunotherapy for acute myeloid leukemia. J Hematol Oncol. 2020;13(1):167.
4. Kang L, Voskinarian-Berse V, Law E, Reddin T, Bhatia M, Hariri A, Ning Y, Dong D, Maguire T, Yarmush M, et al. Characterization and ex vivo expansion of human placenta-derived natural killer cells for cancer immunotherapy. Front Immunol. 2013;4:101.
5. Wu SY, Fu T, Jiang YZ, Shao ZM. Natural killer cells in cancer biology and therapy. Mol Cancer. 2020;19(1):120.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献