A multilevel features selection framework for skin lesion classification

Author:

Akram Tallha,Lodhi Hafiz M. Junaid,Naqvi Syed Rameez,Naeem Sidra,Alhaisoni Majed,Ali Muhammad,Haider Sajjad Ali,Qadri Nadia N.

Abstract

Abstract Melanoma is considered to be one of the deadliest skin cancer types, whose occurring frequency elevated in the last few years; its earlier diagnosis, however, significantly increases the chances of patients’ survival. In the quest for the same, a few computer based methods, capable of diagnosing the skin lesion at initial stages, have been recently proposed. Despite some success, however, margin exists, due to which the machine learning community still considers this an outstanding research challenge. In this work, we come up with a novel framework for skin lesion classification, which integrates deep features information to generate most discriminant feature vector, with an advantage of preserving the original feature space. We utilize recent deep models for feature extraction, and by taking advantage of transfer learning. Initially, the dermoscopic images are segmented, and the lesion region is extracted, which is later subjected to retrain the selected deep models to generate fused feature vectors. In the second phase, a framework for most discriminant feature selection and dimensionality reduction is proposed, entropy-controlled neighborhood component analysis (ECNCA). This hierarchical framework optimizes fused features by selecting the principle components and extricating the redundant and irrelevant data. The effectiveness of our design is validated on four benchmark dermoscopic datasets; PH2, ISIC MSK, ISIC UDA, and ISBI-2017. To authenticate the proposed method, a fair comparison with the existing techniques is also provided. The simulation results clearly show that the proposed design is accurate enough to categorize the skin lesion with 98.8%, 99.2% and 97.1% and 95.9% accuracy with the selected classifiers on all four datasets, and by utilizing less than 3% features.

Funder

University of Hail

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Reference69 articles.

1. Skin cancer facts, 2017. URL https://seer.cancer.gov/statfacts/html/melan.html

2. Barata C, Ruela M, Francisco M, Mendonca T, Marques J (2014) Two systems for the detection of melanomas in dermoscopy images using texture and color features. Syst J 8:965–979

3. Hoshyar AN, Al-Jumaily A (2014) The beneficial techniques in preprocessing step of skin cancer detection system comparing. Procedia Comput Sci 42:25–31

4. Nachbar F, Stolz W, Merkle T, Cognetta AB, Vogt T, Landthaler M, Bilek P, Braunfalco O, Plewig G (1994) The ABCD rule of dermatoscopy. J Am Acad Dermatol 4:521–527

5. Delfino M, Argenziano G, Fabbrocini G, Carli P, Giorgi VD, Sammarco E (1998) Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions. Comparison of the ABCD rule. Arch Dermatol 134:1563–1570

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3