An adaptive weight search method based on the Grey wolf optimizer algorithm for skin lesion ensemble classification

Author:

Liu Luzhou1ORCID,Zhang Xiaoxia1,Xu Zhinan1

Affiliation:

1. School of Computer Science and Software Engineering University of Science and Technology Liaoning Anshan China

Abstract

AbstractSkin cancer is a common type of malignant tumor that poses a serious threat to patients' lives and health, especially melanoma. It may spread to other body parts, resulting in serious complications and death. In the medical field, accurate identification of skin lesion images is crucial for diagnosing different diseases. However, due to the similarity between different skin lesions, it brings some challenges to medical diagnosis. In this paper, a novel Ensemble Learning Model (EL‐DLOA) based on deep learning and optimization algorithms is proposed, which uses four different deep neural network architectures to generate confidence levels for classes, and optimization algorithms are used to integrate these confidence levels to make the final predictions. To ensure the model's accuracy and reliability, it is first trained using three different learning rates to find the best classification performance of the model. Then, a new search method based on the grey wolf optimization algorithm is proposed to enhance the grey wolf search efficiency. The method improves the search mechanism by changing the grey wolf's individual position through random perturbation or adaptive mutation, which solves the problem that the grey wolf algorithm is easy to fall into local optimum. Finally, four different ensemble strategies are used to reduce individual model bias in the classification process. The proposed model is trained and evaluated using the publicly available dataset HAM10000. The experimental results show that the improved grey wolf optimization algorithm effectively avoids the premature convergence problem and improves the search combination efficiency. Furthermore, in the ensemble methods, the adaptive weight average ensemble strategy effectively improves the classification performance, yielding accuracy, precision, recall, and F1 scores of 0.888, 0.837, 0.897, and 0.862, respectively. These metrics show varying degrees of improvement over the best performing single model. In general, the results indicate that the proposed method achieves high accuracy and practicality in skin lesion classification. Our model shows excellent performance in comparison with other existing models, which makes it significant for research and application in dermatology diagnosis.

Publisher

Wiley

Reference32 articles.

1. A multilevel features selection framework for skin lesion classification;Akram T;HCIS,2020

2. Human diseases detection based on machine learning algorithms: a review;Salim N;Int J Sci Business,2021

3. The ABCD rule of dermatoscopy

4. Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions: comparison of the ABCD rule of dermatoscopy and a new 7‐point checklist based on pattern analysis;Argenziano G;Arch Dermatol,1998

5. Frequency and Morphologic Characteristics of Invasive Melanomas Lacking Specific Surface Microscopic Features

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3