Design and test bed experiments of server operation system using virtualization technology

Author:

Huh Jun-Ho,Seo Kyungryong

Abstract

AbstractAccording to current researches, much of the electric power is being consumed by the server cooling system at the Data Center. Moreover, the power consumption rate increases when the number of the equipments and servers expands. Thus, the proposed server operation system has been designed to decrease power consumption rate and CO2 emission volume by minimizing the number of these equipments and simplifying the physical composition of the system. Virtualization technology was adopted in both designing and implementation phases to improve resource efficiency of the system. As a result, significant amount has been saved while constructing the server operation system in this paper. System’s performance has been evaluated using a virtual machine prior to its practical use through test bed experiments and the results confirms our expectation that the virtual hardwares will work as efficiently as actual ones.

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Reference39 articles.

1. Shin J (2009) Technological trends in green IT. Korean Institute of Information Scientists and Engineers, pp 35–36 (in Korean)

2. Baek JS (2009) Operating system virtualization for mobile desktop environment on windows, M.S. thesis, Department of computer and communications engineering POSTECH Graduate School of Information Technology, pp 2–8 (in Korean)

3. Wang S, Xu DS, Yan SL (2010) Analysis and application of Wireshark in TCP/IP protocol teaching. In: IEEE EDT, pp 269–272

4. Huh JH, Seo K (2013) Designing and implementation of networks learning systems by using virtual computers. In: The 9th international conference on MITA 2013, Bali, pp 68–71

5. Huh JH (2012) Designing and implementation of networks learning systems by using virtual computers, M.S. thesis, Department of Computer Science Education, Graduate School of Education, Pukyong National University at Daeyeon, Busan, pp 2–18. (in Korean)

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3