Experimental Characteristics Study of Data Storage Formats for Data Marts Development within Data Lakes

Author:

Belov Vladimir,Kosenkov Alexander N.,Nikulchev EvgenyORCID

Abstract

One of the most popular methods for building analytical platforms involves the use of the concept of data lakes. A data lake is a storage system in which the data are presented in their original format, making it difficult to conduct analytics or present aggregated data. To solve this issue, data marts are used, representing environments of stored data of highly specialized information, focused on the requests of employees of a certain department, the vector of an organization’s work. This article presents a study of big data storage formats in the Apache Hadoop platform when used to build data marts.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data Lake Conceptualized Web Platform for Food Research Data Collection;Journal of Web Engineering;2024-05-25

2. A Compendious Research on Big Data File Formats;2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS);2022-05-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3