Exploring the support for high performance applications in the container runtime environment

Author:

Martin John PaulORCID,Kandasamy A.,Chandrasekaran K.

Abstract

AbstractCloud computing is the driving power behind the current technological era. Virtualization is rightly referred to as the backbone of cloud computing. Impacts of virtualization employed in high performance computing (HPC) has been much reviewed by researchers. The overhead in the virtualization layer was one of the reasons which hindered its application in the HPC environment. Recent developments in virtualization, especially the OS container based virtualization provides a solution that employs a lightweight virtualization layer and promises lesser overhead. Containers are advantageous over virtual machines in terms of performance overhead which is a major concern in the case of both data intensive applications and compute intensive applications. Currently, several industries have adopted container technologies such as Docker. While Docker is widely used, it has certain pitfalls such as security issues. The recently introduced CoreOS Rkt container technology overcomes these shortcomings of Docker. There has not been much research on how the Rkt environment is suited for high performance applications. The differences in the stack of the Rkt containers suggest better support for high performance applications. High performance applications consist of CPU-intensive and data-intensive applications. The High Performance Linpack Library and the Graph500 are the commonly used computation intensive and data-intensive benchmark applications respectively. In this work, we explore the feasibility of this inter-operable Rkt container in high performance applications by running the HPL and Graph500 applications and compare its performance with the commonly used container technologies such as LXC and Docker containers.

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Reference25 articles.

1. Moon Y, Yu H, Gil J-M, Lim J (2017) A slave ants based ant colony optimization algorithm for task scheduling in cloud computing environments. Hum-centric Comput Inf Sci 7(1):28

2. Zhu W, Lee C (2016) A security protection framework for cloud computing. J Inf Process Syst 12(3):538–547

3. Kar J, Mishra MR (2016) Mitigate threats and security metrics in cloud computing. J Inf Process Syst 12(2):226–233

4. Huh J-H, Seo K (2016) Design and test bed experiments of server operation system using virtualization technology. Hum-centric Comput Inf Sci 6(1):1

5. Yu H-E, Huang W (2015) Building a virtual hpc cluster with auto scaling by the docker. arXiv preprint arXiv:1509.08231

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3