Author:
Khoobjou E.,Mazinan A. H.
Abstract
AbstractFlexible robot system is in general taken into real consideration as most important process in a number of academic and industrial environments. Due to the fact that the aforementioned system is so applicable in real domains, the novel ideas with respect to state-of-the-art in outperforming its performance are always valuable. With this purpose, a number of the soft computing techniques can be preferred with reference to the traditional ones to predict and optimize the overall performance of the above-captioned process. The approach proposed here is in fact organized in line with the integration of the fuzzy-based approach in association with the neural networks, in order to enable the process under control to be capable of learning and adapting to be matched, in a number of real environments. It can be shown that the outcomes tolerate the imprecise circumstances, as one of advantages regarding the fuzzy-based approach. In the present investigation, a new hybrid approach is proposed to deal with the arm of flexible robot system through the neural networks, the fuzzy-based approach and also the particle swarm optimization. It should be noted that the objective of the proposed research is to control the claw of robot system including two-degree-of-freedom movable arms. The results indicate that the mean-square error and the root-mean-square error are accurately outperformed with reference to the traditional ones, tangibly.
Publisher
Springer Science and Business Media LLC
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献