An effective image retrieval based on optimized genetic algorithm utilized a novel SVM-based convolutional neural network classifier

Author:

Ghrabat Mudhafar Jalil JassimORCID,Ma Guangzhi,Maolood Ismail Yaqub,Alresheedi Shayem Saleh,Abduljabbar Zaid Ameen

Abstract

Abstract Image retrieval is the process of retrieving images from a database. Certain algorithms have been used for traditional image retrieval. However, such retrieval involves certain limitations, such as manual image annotation, ineffective feature extraction, inability capability to handle complex queries, increased time required, and production of less accurate results. To overcome these issues, an effective image retrieval method is proposed in this study. This work intends to effectively retrieve images using a best feature extraction process. In the preprocessing of this study, a Gaussian filtering technique is used to remove the unwanted data present in the dataset. After preprocessing, feature extraction is applied to extract features, such as texture and color. Here, the texture feature is categorized as a gray level cooccurrence matrix, whereas the novel statistical and color features are considered image intensity-based color features. These features are clustered by k-means clustering for label formation. A modified genetic algorithm is used to optimize the features, and these features are classified using a novel SVM-based convolutional neural network (NSVMBCNN). Then, the performance is evaluated in terms of sensitivity, specificity, precision, recall, retrieval and recognition rate. The proposed feature extraction and modified genetic algorithm-based optimization technique outperforms existing techniques in experiments, with four different datasets used to test the proposed model. The performance of the proposed method is also better than those of the existing (RVM) regression vector machine, DSCOP, as well as the local directional order pattern (LDOP) and color co-occurrence feature + bit pattern feature (CCF + BPF) methods, in terms of the precision, recall, accuracy, sensitivity and specificity of the NSVMBCNN.

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3