Remote sensing image information extraction based on Compensated Fuzzy Neural Network and big data analytics

Author:

Sun Rui,Zhang Zhengyin,Liu Yajun,Niu Xiaohang,Yuan Jie

Abstract

AbstractMedical imaging AI systems and big data analytics have attracted much attention from researchers of industry and academia. The application of medical imaging AI systems and big data analytics play an important role in the technology of content based remote sensing (CBRS) development. Environmental data, information, and analysis have been produced promptly using remote sensing (RS). The method for creating a useful digital map from an image data set is called image information extraction. Image information extraction depends on target recognition (shape and color). For low-level image attributes like texture, Classifier-based Retrieval(CR) techniques are ineffective since they categorize the input images and only return images from the determined classes of RS. The issues mentioned earlier cannot be handled by the existing expertise based on a keyword/metadata remote sensing data service model. To get over these restrictions, Fuzzy Class Membership-based Image Extraction (FCMIE), a technology developed for Content-Based Remote Sensing (CBRS), is suggested. The compensation fuzzy neural network (CFNN) is used to calculate the category label and fuzzy category membership of the query image. Use a basic and balanced weighted distance metric. Feature information extraction (FIE) enhances remote sensing image processing and autonomous information retrieval of visual content based on time-frequency meaning, such as color, texture and shape attributes of images. Hierarchical nested structure and cyclic similarity measure produce faster queries when searching. The experiment’s findings indicate that applying the proposed model can have favorable outcomes for assessment measures, including Ratio of Coverage, average means precision, recall, and efficiency retrieval that are attained more effectively than the existing CR model. In the areas of feature tracking, climate forecasting, background noise reduction, and simulating nonlinear functional behaviors, CFNN has a wide range of RS applications. The proposed method CFNN-FCMIE achieves a minimum range of 4–5% for all three feature vectors, sample mean and comparison precision-recall ratio, which gives better results than the existing classifier-based retrieval model. This work provides an important reference for medical imaging artificial intelligence system and big data analysis.

Publisher

Springer Science and Business Media LLC

Reference28 articles.

1. Ansper A. Retrieval of chlorophyll a from Sentinel-2 MSI data for the European Union water framework directive reporting purposes. Remote Sens. 2018;11(1):64.

2. Huang K, Li G, Wang J. Rapid retrieval strategy for massive remote sensing metadata based on GeoHash coding. Remote Sens Lett. 2018;9(11):1070–8.

3. Li Y, Ma J, Zhang Y. Image retrieval from remote sensing big data: a survey. Inform Fusion. 2021;67:94–115.

4. Song W, Gao Z, Dian R, Ghamisi P, Zhang Y, Jón AB. Asymmetric hash code learning for remote sensingimage retrieval. IEEE Trans Geosci Remote Sens. 2022;60:1–14.

5. Zhang J. Automatic detection method of technical and tactical indicators for table tennis based on trajectory prediction using compensation fuzzy neural network. Comput Intell Neurosci. 2021;2021:3155357.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3