A generic framework for ontology-based information retrieval and image retrieval in web data

Author:

Vijayarajan V.,Dinakaran M.,Tejaswin Priyam,Lohani Mayank

Abstract

AbstractIn the internet era, search engines play a vital role in information retrieval from web pages. Search engines arrange the retrieved results using various ranking algorithms. Additionally, retrieval is based on statistical searching techniques or content-based information extraction methods. It is still difficult for the user to understand the abstract details of every web page unless the user opens it separately to view the web content. This key point provided the motivation to propose and display an ontology-based object-attribute-value (O-A-V) information extraction system as a web model that acts as a user dictionary to refine the search keywords in the query for subsequent attempts. This first model is evaluated using various natural language processing (NLP) queries given as English sentences. Additionally, image search engines, such as Google Images, use content-based image information extraction and retrieval of web pages against the user query. To minimize the semantic gap between the image retrieval results and the expected user results, the domain ontology is built using image descriptions. The second proposed model initially examines natural language user queries using an NLP parser algorithm that will identify the subject-predicate-object (S-P-O) for the query. S-P-O extraction is an extended idea from the ontology-based O-A-V web model. Using this S-P-O extraction and considering the complex nature of writing SPARQL protocol and RDF query language (SPARQL) from the user point of view, the SPARQL auto query generation module is proposed, and it will auto generate the SPARQL query. Then, the query is deployed on the ontology, and images are retrieved based on the auto-generated SPARQL query. With the proposed methodology above, this paper seeks answers to following two questions. First, how to combine the use of domain ontology and semantics to improve information retrieval and user experience? Second, does this new unified framework improve the standard information retrieval systems? To answer these questions, a document retrieval system and an image retrieval system were built to test our proposed framework. The web document retrieval was tested against three key-words/bag-of-words models and a semantic ontology model. Image retrieval was tested on IAPR TC-12 benchmark dataset. The precision, recall and accuracy results were then compared against standard information retrieval systems using TREC_EVAL. The results indicated improvements over the standard systems. A controlled experiment was performed by test subjects querying the retrieval system in the absence and presence of our proposed framework. The queries were measured using two metrics, time and click-count. Comparisons were made on the retrieval performed with and without our proposed framework. The results were encouraging.

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic Query Generation Based on Adaptive Naked Mole-Rate Algorithm;Multimedia Tools and Applications;2024-06-27

2. Secure CPS Content-Based Image Retrieval Using Tripartite Delayed Homomorphic Secret Sharing & CNN;HUM-CENT COMPUT INFO;2024

3. BERT-Based Natural Language Processing System for Online Social Information Retrieval on Illness Tracking;2023 International Conference on Advances in Computation, Communication and Information Technology (ICAICCIT);2023-11-23

4. Semantic Context and Attention-driven Framework for Predicting Visual Description Utilizing a Deep Neural Network and Natural Language Processing;International Journal of Case Studies in Business, IT, and Education;2023-07-28

5. Image Retrieval Through Free-Form Query using Intelligent Text Processing;International Journal of Innovative Technology and Exploring Engineering;2023-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3