Abstract
AbstractFerulic acid (p-hydroxy-3-methoxycinnamic acid, FA) is a natural active substance present in plant cell walls, with antioxidant, anticancer, antithrombotic and other properties; it is widely used in medicine, food, and cosmetics. Production of FA by eco‐friendly bioprocess is of great potential. In this study, FA was biosynthesized by metabolically engineered Escherichia coli. As the first step, the genes tal (encoding tyrosine ammonia-lyase, RsTAL) from Rhodobacter sphaeroides, sam5 (encoding p-coumarate 3-hydroxylase, SeSAM5) from Saccharothrix espanaensis and comt (encoding Caffeic acid O-methytransferase, TaCM) from Triticum aestivum were cloned in an operon on the pET plasmid backbone, E. coli strain containing this construction was proved to produce FA from L-tyrosine successfully, and confirmed the function of TaCM as caffeic acid O-methytransferase. Fermentation result revealed JM109(DE3) as a more suitable host cell for FA production than BL21(DE3). After that the genes expression strength of FA pathway were optimized by tuning of promoter strength (T7 promoter or T5 promoter) and copy number (pBR322 or p15A), and the combination p15a-T5 works best. To further improve FA production, E. coli native pntAB, encoding pyridine nucleotide transhydrogenase, was selected from five NADPH regeneration genes to supplement redox cofactor NADPH for converting p-coumaric acid into caffeic acid in FA biosynthesis process. Sequentially, to further convert caffeic acid into FA, a non-native methionine kinase (MetK from Streptomyces spectabilis) was also overexpressed. Based on the flask fermentation data which show that the engineered E. coli strain produced 212 mg/L of FA with 11.8 mg/L caffeic acid residue, it could be concluded that it is the highest yield of FA achieved by E. coli K-12 strains reported to the best of our knowledge.
Funder
National Key Research and Development Program of China
the Strategic Priority Research Program ‘Molecular mechanism of Plant Growth and Development’ of CAS
National Natural Science Foundation of China
the Construction of the Registry and Database of Bioparts for Synthetic Biology of the Chinese Academy of Science
the International Partnership Program of Chinese Academy of Science
Program of Shanghai Academic/Technology Research Leader
the Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project
Publisher
Springer Science and Business Media LLC
Subject
Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献