Dynamic and Static Regulation of Nicotinamide Adenine Dinucleotide Phosphate: Strategies, Challenges, and Future Directions in Metabolic Engineering

Author:

Ding Nana12,Yuan Zenan12,Sun Lei12,Yin Lianghong12

Affiliation:

1. State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China

2. Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China

Abstract

Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is a crucial cofactor in metabolic networks. The efficient regeneration of NADPH is one of the limiting factors for productivity in biotransformation processes. To date, many metabolic engineering tools and static regulation strategies have been developed to regulate NADPH regeneration. However, traditional static regulation methods often lead to the NADPH/NADP+ imbalance, causing disruptions in cell growth and production. These methods also fail to provide real-time monitoring of intracellular NADP(H) or NADPH/NADP+ levels. In recent years, various biosensors have been developed for the detection, monitoring, and dynamic regulate of the intracellular NADP(H) levels or the NADPH/NADP+ balance. These NADPH-related biosensors are mainly used in the cofactor engineering of bacteria, yeast, and mammalian cells. This review analyzes and summarizes the NADPH metabolic regulation strategies from both static and dynamic perspectives, highlighting current challenges and potential solutions, and discusses future directions for the advanced regulation of the NADPH/NADP+ balance.

Funder

National Natural Science Foundation of China

Zhejiang Province San Nong Jiufang Science and Technology Cooperation Plan Project

Zhejiang Provincial Natural Science Foundation of China

Scientific Research Development Foundation of Zhejiang A&F University

Open Project Program of State Key Laboratory of Food Science and Resources, Jiangnan University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3