Physiological and transcriptome analysis elucidates the metabolic mechanism of versatile Porphyridium purpureum under nitrogen deprivation for exopolysaccharides accumulation

Author:

Ji Liang,Li Shaohua,Chen Cheng,Jin Haojie,Wu Haizhen,Fan JianhuaORCID

Abstract

AbstractPorphyridium purpureum is a mesophilic, unicellular red alga rich in phycoerythrin, sulfate polysaccharides, and polyunsaturated fatty acids. Nitrogen deficiency inhibited the growth of P. purpureum and resulted in yellowing of the cells and thickening of the extracellular viscousness sheath. Under nitrogen stress, the contents of total lipids and exopolysaccharides in P. purpureum were increased by 65.2% and 188.0%, respectively. We demonstrate that the immediate response of P. purpureum to nitrogen deficiency is mediated by carbon flow to polysaccharide synthesis, while the synthesis of lipids is enhanced as a permanent energy storage substance at the later stage. Based on transcriptome annotation information, we elucidate the synthesis pathway of polysaccharides from P. purpureum from the perspective of glycosyl-donor interconversion, and demonstrate that the n-6 pathway is the main synthesis pathway of polyunsaturated fatty acids. This study not only provides a production strategy for polysaccharides and fatty acids by single-celled marine red algae P. purpureum, but also provides targets for further genetic modification.

Funder

National Key Research and Development Project of China

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3