Abstract
AbstractPorphyridium purpureum is a mesophilic, unicellular red alga rich in phycoerythrin, sulfate polysaccharides, and polyunsaturated fatty acids. Nitrogen deficiency inhibited the growth of P. purpureum and resulted in yellowing of the cells and thickening of the extracellular viscousness sheath. Under nitrogen stress, the contents of total lipids and exopolysaccharides in P. purpureum were increased by 65.2% and 188.0%, respectively. We demonstrate that the immediate response of P. purpureum to nitrogen deficiency is mediated by carbon flow to polysaccharide synthesis, while the synthesis of lipids is enhanced as a permanent energy storage substance at the later stage. Based on transcriptome annotation information, we elucidate the synthesis pathway of polysaccharides from P. purpureum from the perspective of glycosyl-donor interconversion, and demonstrate that the n-6 pathway is the main synthesis pathway of polyunsaturated fatty acids. This study not only provides a production strategy for polysaccharides and fatty acids by single-celled marine red algae P. purpureum, but also provides targets for further genetic modification.
Funder
National Key Research and Development Project of China
Publisher
Springer Science and Business Media LLC
Subject
Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献