Abstract
Abstract
Background
Fermentation is a classic industrial process that can be applied as an efficient strategy to increase the release of bioactive compounds with antioxidant and antidiabetic activities.
Methods
This work reported the effects of solid-state fermentation (SSF) performed using strains of Aspergillus oryzae and Aspergillus niger on the antioxidant (DPPH, ABTS and FRAP) and in vitro antidiabetic (inhibition of α-amylase and α-glucosidase activities) potential of lentils.
Results
The results showed that the profiles of the biological activities of the extracts obtained from the fermented samples varied greatly with respect to both the microorganism involved and the fermentation time. The extracts obtained from the fermented lentils by A. oryzae after 72 h and by A. niger after 48 h using the FRAP assay showed the most remarkable changes in the antioxidant activity, increasing by 107 and 81%, respectively, compared to the nonfermented lentils. The lentil extracts produced by fermentation with A. niger after 48 h were able to inhibit the α-glucosidase activity by up to 90%, while a maximal inhibition of amylase (~ 75%) was achieved by the lentil extract obtained after 24 h of fermentation with A. oryzae. The content of the total phenolic compounds (TPCs) and the identification of them in lentil extracts correlated well with the improvement of the biological activities.
Conclusion
These results suggested that SSF was feasible to obtain extracts of fermented lentils with improved antioxidant and antidiabetic properties. Additionally, these results indicated that the proper choice of microorganism is crucial to direct the process for the production of compounds with specific biological activities.
Funder
Fundação de Amparo à Pesquisa do Estado de São Paulo
Fundo de Apoio ao Ensino, à Pesquisa e Extensão, Universidade Estadual de Campinas
Publisher
Springer Science and Business Media LLC
Subject
Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology
Reference39 articles.
1. Agil R, Gaget A, Gliwa J, Avis TJ, Willmore WG, Hosseinian F (2013) Lentils enhance probiotic growth in yogurt and provide added benefit of antioxidant protection. LWT Food Sci Technol 50:45–49.
https://doi.org/10.1016/j.lwt.2012.07.032
2. Aguilar CN, Aguilera-Carbo A, Robledo A, Ventura J, Belmares R, Martinez D, Rodríguez-Herrera R, Contreras J (2008) Production of antioxidant nutraceuticals by solid-state cultures of pomegranate (Punica granatum) peel and creosote bush (Larrea tridentata) leaves. Food Technol Biotechnol 46:218–222
3. Al-Duais M, Müller L, Böhm V, Jetschke G (2009) Antioxidant capacity and total phenolics of Cyphostemma digitatum before and after processing: use of different assays. Eur Food Res Technol 228:813–821.
https://doi.org/10.1007/s00217-008-0994-8
4. Apostolidis E, Kwon YI, Ghaedian R, Shetty K (2007) Fermentation of milk and soymilk by Lactobacillus bulgaricus and Lactobacillus acidophilus enhances functionality for potential dietary management of hyperglycemia and hypertension. Food Biotechnol 21:217–236.
https://doi.org/10.1080/08905430701534032
5. Ayyash M, Johnson SK, Liu S, Mesmari N, Dahmani S, Al Dhaheri AS, Kizhakkayil J (2019) In vitro investigation of bioactivities of solid-state fermented lupin, quinoa and wheat using Lactobacillus spp. Food Chem 275:50–58.
https://doi.org/10.1016/j.foodchem.2018.09.031
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献