Identification of SNPs associated with variola virus virulence
-
Published:2013-02-14
Issue:1
Volume:6
Page:
-
ISSN:1756-0381
-
Container-title:BioData Mining
-
language:en
-
Short-container-title:BioData Mining
Author:
Hoen Anne Gatewood,Gardner Shea N,Moore Jason H
Abstract
Abstract
Background
Decades after the eradication of smallpox, its etiological agent, variola virus (VARV), remains a threat as a potential bioweapon. Outbreaks of smallpox around the time of the global eradication effort exhibited variable case fatality rates (CFRs), likely attributable in part to complex viral genetic determinants of smallpox virulence. We aimed to identify genome-wide single nucleotide polymorphisms associated with CFR. We evaluated unadjusted and outbreak geographic location-adjusted models of single SNPs and two- and three-way interactions between SNPs.
Findings
Using the data mining approach multifactor dimensionality reduction (MDR), we identified five VARV SNPs in models significantly associated with CFR. The top performing unadjusted model and adjusted models both revealed the same two-way gene-gene interaction. We discuss the biological plausibility of the influence of the SNPs identified these and other significant models on the strain-specific virulence of VARV.
Conclusions
We have identified genetic loci in the VARV genome that are statistically associated with VARV virulence as measured by CFR. While our ability to infer a causal relationship between the specific SNPs identified in our analysis and VARV virulence is limited, our results suggest that smallpox severity is in part associated with VARV strain variation and that VARV virulence may be determined by multiple genetic loci. This study represents the first application of MDR to the identification of pathogen gene-gene interactions for predicting infectious disease outbreak severity.
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Genetics,Molecular Biology,Biochemistry
Reference13 articles.
1. Shchelkunov SN, Totmenin AV, Loparev VN, Safronov PF, Gutorov VV, Chizhikov VE, Knight JC, Parsons JM, Massung RF, Esposito JJ: Alastrim smallpox variola minor virus genome DNA sequences. Virology. 2000, 266: 361-386. 10.1006/viro.1999.0086. 2. Esposito JJ, Sammons SA, Frace AM, Osborne JD, Olsen-Rasmussen M, Zhang M, Govil D, Damon IK, Kline R, Laker M, Li Y, Smith GL, Meyer H, Leduc JW, Wohlhueter RM: Genome sequence diversity and clues to the evolution of variola (smallpox) virus. Science. 2006, 313: 807-812. 10.1126/science.1125134. 3. Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH: Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet. 2001, 69: 138-147. 10.1086/321276. 4. Gardner SN, Slezak T: Scalable SNP analyses of 100+ bacterial or viral genomes. J Forensic Res. 2010, 01: 107- 5. Greene CS, Himmelstein DS, Nelson HH, Kelsey KT, Williams SM, Andrew AS, Karagas MR, Moore JH: Enabling personal genomics with an explicit test of epistasis. Pac Symp Biocomput. 2010, 327-336.http://www.ncbi.nlm.nih.gov/pubmed/19908385,
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|