Abstract
Abstract
Background
Several Rhodobacter sphaeroides have been widely applied in commercial CoQ10 production, but they have poor glucose use. Strategies for enhancing glucose use have been widely exploited in R. sphaeroides. Nevertheless, little research has focused on the role of glucose transmembrane in the improvement of production.
Results
There are two potential glucose transmembrane pathways in R. sphaeroides ATCC 17023: the fructose specific-phosphotransferase system (PTSFru, fruAB) and non-PTS that relied on glucokinase (glk). fruAB mutation revealed two effects on bacterial growth: inhibition at the early cultivation phase (12–24 h) and promotion since 36 h. Glucose metabolism showed a corresponding change in characteristic vs. the growth. For ΔfruAΔfruB, maximum biomass (Biomax) was increased by 44.39% and the CoQ10 content was 27.08% more than that of the WT. glk mutation caused a significant decrease in growth and glucose metabolism. Over-expressing a galactose:H+ symporter (galP) in the ΔfruAΔfruB relieved the inhibition and enhanced the growth further. Finally, a mutant with rapid growth and high CoQ10 titer was constructed (ΔfruAΔfruB/tac::galPOP) using several glucose metabolism modifications and was verified by fermentation in 1 L fermenters.
Conclusions
The PTSFru mutation revealed two effects on bacterial growth: inhibition at the early cultivation phase and promotion later. Additionally, biomass yield to glucose (Yb/glc) and CoQ10 synthesis can be promoted using fruAB mutation, and glk plays a key role in glucose metabolism. Strengthening glucose transmembrane via non-PTS improves the productivity of CoQ10 fermentation.
Funder
Foundation of Qilu University of Technology of Cultivating Subject for Biology and Biochemistry
National Natural Science Foundation of China
Natural Science Foundation of Shandong
Key Technology Research and Development Program of Shandong
Key Research and Development Program of Jiangxi Province
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献