Improving CoQ10 productivity by strengthening glucose transmembrane of Rhodobacter sphaeroides

Author:

Yang Yuying,Li Lu,Sun Haoyu,Li Zhen,Qi ZhengliangORCID,Liu Xinli

Abstract

Abstract Background Several Rhodobacter sphaeroides have been widely applied in commercial CoQ10 production, but they have poor glucose use. Strategies for enhancing glucose use have been widely exploited in R. sphaeroides. Nevertheless, little research has focused on the role of glucose transmembrane in the improvement of production. Results There are two potential glucose transmembrane pathways in R. sphaeroides ATCC 17023: the fructose specific-phosphotransferase system (PTSFru, fruAB) and non-PTS that relied on glucokinase (glk). fruAB mutation revealed two effects on bacterial growth: inhibition at the early cultivation phase (12–24 h) and promotion since 36 h. Glucose metabolism showed a corresponding change in characteristic vs. the growth. For ΔfruAΔfruB, maximum biomass (Biomax) was increased by 44.39% and the CoQ10 content was 27.08% more than that of the WT. glk mutation caused a significant decrease in growth and glucose metabolism. Over-expressing a galactose:H+ symporter (galP) in the ΔfruAΔfruB relieved the inhibition and enhanced the growth further. Finally, a mutant with rapid growth and high CoQ10 titer was constructed (ΔfruAΔfruB/tac::galPOP) using several glucose metabolism modifications and was verified by fermentation in 1 L fermenters. Conclusions The PTSFru mutation revealed two effects on bacterial growth: inhibition at the early cultivation phase and promotion later. Additionally, biomass yield to glucose (Yb/glc) and CoQ10 synthesis can be promoted using fruAB mutation, and glk plays a key role in glucose metabolism. Strengthening glucose transmembrane via non-PTS improves the productivity of CoQ10 fermentation.

Funder

Foundation of Qilu University of Technology of Cultivating Subject for Biology and Biochemistry

National Natural Science Foundation of China

Natural Science Foundation of Shandong

Key Technology Research and Development Program of Shandong

Key Research and Development Program of Jiangxi Province

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3