Recent advances in the metabolic pathways and microbial production of coenzyme Q

Author:

Pierrel Fabien,Burgardt Arthur,Lee Jin-Ho,Pelosi Ludovic,Wendisch Volker F.ORCID

Abstract

AbstractCoenzyme Q (CoQ) serves as an electron carrier in aerobic respiration and has become an interesting target for biotechnological production due to its antioxidative effect and benefits in supplementation to patients with various diseases. Here, we review discovery of the pathway with a particular focus on its superstructuration and regulation, and we summarize the metabolic engineering strategies for overproduction of CoQ by microorganisms. Studies in model microorganisms elucidated the details of CoQ biosynthesis and revealed the existence of multiprotein complexes composed of several enzymes that catalyze consecutive reactions in the CoQ pathways of Saccharomyces cerevisiae and Escherichia coli. Recent findings indicate that the identity and the total number of proteins involved in CoQ biosynthesis vary between species, which raises interesting questions about the evolution of the pathway and could provide opportunities for easier engineering of CoQ production. For the biotechnological production, so far only microorganisms have been used that naturally synthesize CoQ10 or a related CoQ species. CoQ biosynthesis requires the aromatic precursor 4-hydroxybenzoic acid and the prenyl side chain that defines the CoQ species. Up to now, metabolic engineering strategies concentrated on the overproduction of the prenyl side chain as well as fine-tuning the expression of ubi genes from the ubiquinone modification pathway, resulting in high CoQ yields. With expanding knowledge about CoQ biosynthesis and exploration of new strategies for strain engineering, microbial CoQ production is expected to improve.

Funder

ANR

NRF-Korea

BMBF

EFRE

Universität Bielefeld

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,General Medicine,Physiology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3