Flavour by design: food-grade lactic acid bacteria improve the volatile aroma spectrum of oat milk, sunflower seed milk, pea milk, and faba milk towards improved flavour and sensory perception

Author:

Tangyu Muzi,Fritz Michel,Tan Jan Patrick,Ye Lijuan,Bolten Christoph J.,Bogicevic Biljana,Wittmann Christoph

Abstract

Abstract Background The global market of plant-based milk alternatives is continually growing. Flavour and taste have a key impact on consumers’ selection of plant-based beverages. Unfortunately, natural plant milks have only limited acceptance. Their typically bean-like and grassy notes are perceived as “off-flavours” by consumers, while preferred fruity, buttery, and cheesy notes are missing. In this regard, fermentation of plant milk by lactic acid bacteria (LAB) appears to be an appealing option to improve aroma and taste. Results In this work, we systematically studied LAB fermentation of plant milk. For this purpose, we evaluated 15 food-approved LAB strains to ferment 4 different plant milks: oat milk (representing cereal-based milk), sunflower seed milk (representing seed-based milk), and pea and faba milk (representing legume-based milk). Using GC‒MS analysis, flavour changes during anaerobic fermentations were studied in detail. These revealed species-related and plant milk-related differences and highlighted several well-performing strains delivered a range of beneficial flavour changes. A developed data model estimated the impact of individual flavour compounds using sensory scores and predicted the overall flavour note of fermented and nonfermented samples. Selected sensory perception tests validated the model and allowed us to bridge compositional changes in the flavour profile with consumer response. Conclusion Specific strain-milk combinations provided quite different flavour notes. This opens further developments towards plant-based products with improved flavour, including cheesy and buttery notes, as well as other innovative products in the future. S. thermophilus emerged as a well-performing strain that delivered preferred buttery notes in all tested plant milks. The GC‒MS-based data model was found to be helpful in predicting sensory perception, and its further refinement and application promise enhanced potential to upgrade fermentation approaches to flavour-by-design strategies.

Funder

Nestec

Universität des Saarlandes

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3