Differential role of segments of α-mating factor secretion signal in Pichia pastoris towards granulocyte colony-stimulating factor emerging from a wild type or codon optimized copy of the gene

Author:

Aggarwal Sakshi,Mishra SarojORCID

Abstract

Abstract Background The methylotrophic yeast, Pichia pastoris has been widely used for the production of human therapeutics, but production of granulocyte colony-stimulating factor (G-CSF) in this yeast is low.The work reported here aimed to improve the extracellular production of G-CSF by introducing mutations in the leader sequence and using a codon optimized copy of G-CSF. Bioinformatic analysis was carried out to propose an explanation for observed effect of mutations on extracellular G-CSF production. Results Mutations in the pro-region of the α-mating type (MAT) secretory signal, when placed next to a codon optimized (CO)-GCSF copy, specifically, the Δ57–70 type, led to highest G-CSF titre of 39.4 ± 1.4 mg/L. The enhanced effect of this deletion was also observed when it preceded the WT copy of the gene. Deletion of the 30–43 amino acids in the pro-peptide, fused with the wild type (WT)-GCSF copy, completely diminished G-CSF secretion, while no effect was observed when this deletion was in front of the CO-GCSF construct. Also, Matα:Δ47–49 deletion preceding the WT-GCSF dampened the secretion of this protein, while no effect was seen when this deletion preceded the CO-GCSF copy of the gene. This indicated that faster rates of translation (as achieved through codon optimization) could overcome the control exercised by these segments. The loss of secretion occurring due to Δ30–43 in the WT-GCSF was partially restored (by 60%) when the Δ57–70 was added. The effect of Δ47–49 segment in the WT-GCSF could also be partially restored (by 60%) by addition of Δ57–70 indicating the importance of the 47–49 region. A stimulatory effect of Δ57–70 was confirmed in the double deletion (Matα:Δ57–70;47–49) construct preceding the CO-GCSF. Secondary and tertiary structures, when predicted using I-TASSER, allowed to understand the relationship between structural changes and their impact on G-CSF secretion. The Δ57–70 amino acids form a major part of 3rd alpha-helix in the pre-pro peptide and its distortion increased the flexibility of the loop, thereby promoting its interaction with the cargo protein. A minimum loop length was found to be necessary for secretion. The strict control in the process of secretion appeared to be overcome by changing the secondary structures in the signal peptides. Such fine tuning can allow enhanced secretion of other therapeutics in this expression system. Conclusions Among the different truncations (Matα:Δ57–70, Matα:Δ47–49, Matα:Δ30–43, Matα:Δ57–70;30–43, Matα:Δ57–70;47–49) in pro-peptide of α-MAT secretion signal, Matα:Δ57–70 fused to CO-GCSF, led to highest G-CSF titre as compared to other Matα truncations. On the other hand, Matα:Δ30–43 and Matα:Δ47–49 fused to the WT-GCSF dampened the secretion of this protein indicating important role of these segments in the secretion of the cargo protein.

Funder

Indian Institute of Technology Delhi

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Reference70 articles.

1. Martinez JL, Liu L, Petranovic D, Nielsen J. Pharmaceutical protein production by yeast: towards production of human blood proteins by microbial fermentation. Curr Opinion Biotechnol. 2012;23:965–71. https://doi.org/10.1016/j.copbio.2012.03.011 .

2. Cahill TJ, Choudhury RP, Riley PR. Heart regeneration and repair after myocardial infarction: translational opportunities for novel therapeutics. Nat Rev Drug Discov. 2017;16:699–717. https://doi.org/10.1038/nrd.2017.106 .

3. Smith TJ, Ozer H, Miller LL, Schiffer CA, Winn RJ, Anderson JR, Anderson PN, Armitage JO, Beckhardt S, Bennett CL, Bodey GP. Update of recommendations for the use of hematopoietic colony-stimulating factors: evidence-based clinical practice guidelines. J Clin Oncol. 1996;14:1957–60. https://doi.org/10.1200/JCO.1996.14.6.1957 .

4. Morstyn G, Campbell L, Lieschke G, Layton JE, Maher D, O’Connor M, Green M, Sheridan W, Vincent M, Alton K. Treatment of chemotherapy-induced neutropenia by subcutaneously administered granulocyte colony-stimulating factor with optimization of dose and duration of therapy. J Clin Oncol. 1989;7:1554–62. https://doi.org/10.1200/JCO.1989.7.10.1554 .

5. DiPersio JF, Stadtmauer EA, Nademanee A, Micallef IN, Stiff PJ, Kaufman JL, Maziarz RT, Hosing C, Früehauf S, Horwitz M, Cooper D. Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood J Am Soc Hematol. 2009;113:5720–6. https://doi.org/10.1182/blood-2008-08-174946 .

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3