Abstract
AbstractAstaxanthin is a carotenoid with a number of assets useful for the food, cosmetic and pharmaceutical industries. Nowadays, it is mainly produced by chemical synthesis. However, the process leads to an enantiomeric mixture where the biologically assimilable forms (3R, 3′R or 3S, 3′S) are a minority. Microbial production of (3R, 3′R) astaxanthin by Xanthophyllomyces dendrorhous is an appealing alternative due to its fast growth rate and easy large-scale production. In order to increase X. dendrorhous astaxanthin yields, random mutant strains able to produce from 6 to 10 mg/g dry mass have been generated; nevertheless, they often are unstable. On the other hand, site-directed mutant strains have also been obtained, but they increase only the yield of non-astaxanthin carotenoids. In this review, we insightfully analyze the metabolic carbon flow converging in astaxanthin biosynthesis and, by integrating the biological features of X. dendrorhous with available metabolic, genomic, transcriptomic, and proteomic data, as well as the knowledge gained with random and site-directed mutants that lead to increased carotenoids yield, we propose new metabolic engineering targets to increase astaxanthin biosynthesis.
Funder
Consejo Nacional de Ciencia y Tecnología
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Reference130 articles.
1. Mata-Gómez LC, Montañez JC, Méndez-Zavala A, Aguilar CN. Biotechnological production of carotenoids by yeasts: an overview. Microb Cell Fact. 2014;13(1):1–11.
2. Gio-Bin L, Sang-Yun L, Eun-Kyu L, Seung-Joo H, Woo-Sik K. Separation of astaxanthin from red yeast Phaffia rhodozyma by supercritical carbon dioxide extraction. Biochem Eng J. 2002;11(2–3):181–7.
3. Bhuvaneswari S, Arunkumar E, Viswanathan P, Anuradha CV. Astaxanthin restricts weight gain, promotes insulin sensitivity and curtails fatty liver disease in mice fed a obesity-promoting diet. Process Biochem. 2010;45(8):1406–14.
4. Gui-Li J, Ling-Yan Z, Yu-Tao W, Ming-Jun Z. Astaxanthin from Jerusalem artichoke: production by fed-batch fermentation using Phaffia rhodozyma and application in cosmetics. Process Biochem. 2017;63:16–25.
5. Wang HD, Chen C, Huynh P, Chang J. Exploring the potential of using algae in cosmetics. Bioresour Technol. 2015;184:355–62.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献