Abstract
Abstract
Background
Gamma-aminobutyric acid (GABA) is an important bio-product used in pharmaceuticals and functional foods and as a precursor of the biodegradable plastic polyamide 4. Glutamate decarboxylase (GAD) converts l-glutamate (l-Glu) into GABA via decarboxylation. Compared with other methods, develop a bioconversion platform to produce GABA is of considerable interest for industrial use.
Results
Three GAD genes were identified from three Bacillus strains and heterologously expressed in Escherichia coli BL21 (DE3). The optimal reaction temperature and pH values for three enzymes were 40 °C and 5.0, respectively. Of the GADs, GADZ11 had the highest catalytic efficiency towards l-Glu (2.19 mM− 1 s− 1). The engineered E. coli strain that expressed GADZ11 was used as a whole-cell biocatalyst for the production of GABA. After repeated use 14 times, the cells produced GABA with an average molar conversion rate of 98.6% within 14 h.
Conclusions
Three recombinant GADs from Bacillus strains have been conducted functional identification. The engineered E. coli strain heterologous expressing GADZ1, GADZ11, and GADZ20 could accomplish the biosynthesis of l-Glu to GABA in a buffer-free reaction at a high l-Glu concentration. The novel engineered E. coli strain has the potential to be a cost-effective biotransformation platform for the industrial production of GABA.
Funder
National Key Research and Development Program of China
State Key Laboratory of Animal Nutrition
China Agriculture Research System of MOF and MARA
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献