Abstract
Abstract
Background
Bacillus licheniformis 2709 is extensively applied as a host for the high-level production of heterologous proteins, but Bacillus cells often possess unfavorable wild-type properties, such as production of viscous materials and foam during fermentation, which seriously influenced the application in industrial fermentation. How to develop it from a soil bacterium to a super-secreting cell factory harboring less undomesticated properties always plays vital role in industrial production. Besides, the optimal expression pattern of the inducible enzymes like alkaline protease has not been optimized by comparing the transcriptional efficiency of different plasmids and genomic integration sites in B. licheniformis.
Result
Bacillus licheniformis 2709 was genetically modified by disrupting the native lchAC genes related to foaming and the eps cluster encoding the extracellular mucopolysaccharide via a markerless genome-editing method. We further optimized the expression of the alkaline protease gene (aprE) by screening the most efficient expression system among different modular plasmids and genomic loci. The results indicated that genomic expression of aprE was superior to plasmid expression and finally the transcriptional level of aprE greatly increased 1.67-fold through host optimization and chromosomal integration in the vicinity of the origin of replication, while the enzyme activity significantly improved 62.19% compared with the wild-type alkaline protease-producing strain B. licheniformis.
Conclusion
We successfully engineered an AprE high-yielding strain free of undesirable properties and its fermentation traits could be applied to bulk-production by host genetic modification and expression optimization. In summary, host optimization is an enabling technology for improving enzyme production by eliminating the harmful traits of the host and optimizing expression patterns. We believe that these strategies can be applied to improve heterologous protein expression in other Bacillus species.
Funder
National Science and Technology Major Project
National Key Research, Development Program of China
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Reference48 articles.
1. Van Dijl JM, Hecker M. Bacillus subtilis from soil bacterium to super secreting cell factory. Microb Cell Fact. 2013;12:3.
2. Zhou CX, Zhou HY, Zhang HT, Lu FP. Optimization of alkaline protease production by rational deletion of sporulation related genes in Bacillus licheniformis. Microb Cell Fact. 2019;18:127.
3. Dragos A, Kiesewalter H, Martin M, Hsu CY, Hartmann R, Wechsler T, Eriksen C, Brix S, Drescher K, Stanley-Wall N, et al. Division of labor during biofilm matrix production. Curr Biol. 2018;28(1903–1913):e1905.
4. Voigt B, Schroeter R, Schweder T, Jurgen B, Albrecht D, van Dijl JM, Maurer KH, Hecker M. A proteomic view of cell physiology of the industrial workhorse Bacillus licheniformis. J Biotechnol. 2014;191:139–49.
5. Yi GB, Liu Q, Lin JZ, Wang WD, Huang H, Li S. Repeated batch fermentation for surfactin production with immobilized Bacillus subtilis BS-37: two-stage pH control and foam fractionation. J Chem Technol Biot. 2017;92:530–5.
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献