Formulation of cost-effective medium and optimization studies for enhanced production of rapamycin

Author:

K. Ganesh Sanjeev.,C Subathra Devi

Abstract

Abstract Background Enhancing rapamycin production using a cost-effective medium is crucial for wider accessibility, reduced manufacturing costs, sustainable pharmaceutical practices, and advancements in therapeutic applications. It promotes global health, biotechnological innovation, research collaboration, and societal well-being through affordable and effective treatments. This study focuses on the development of a novel cost-effective production medium for the synthesis of rapamycin from Streptomyces hygroscopicus. Results In the initial screening, more rapamycin production was observed in medium A. Initially, the organism produced 10 µg/mL rapamycin. Based on the OFT results, a novel cost-effective medium composition was designed, incorporating soyabean, sugarcane juice, and dried tomato components. Using RSM, soyabean and tomato was found to be more significant in rapamycin production than sugarcane. In the optimized medium, the production of rapamycin increased significantly to 24 µg/mL. Furthermore, a comparative analysis of the growth kinetics between the production normal medium (referred to as production medium A) and the newly optimized cost-effective production medium revealed that the optimized cost-effective production medium significantly enhanced the production of rapamycin. Conclusion Overall, this study demonstrates the successful development of a cost-effective production medium for rapamycin synthesis from S. hygroscopicus. The findings highlight the potential of using a cost-effective medium to enhance the production of a valuable secondary metabolite, rapamycin, while reducing production costs.

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microbial natural compounds and secondary metabolites as Immunomodulators: A review;International Journal of Biological Macromolecules;2024-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3