Engineering for an HPV 9-valent vaccine candidate using genomic constitutive over-expression and low lipopolysaccharide levels in Escherichia coli cells

Author:

Wang Kaihang,Zhou Lizhi,Chen Tingting,Li Qiong,Li Jiajia,Liu Liqin,Li Yuqian,Sun Jie,Li Tingting,Wang Yingbin,Kong Zhibo,Zheng Qingbing,Zhang Jun,Yu Hai,Gu Ying,Xia Ningshao,Li ShaoweiORCID

Abstract

Abstract Background The various advantages associated with the growth properties of Escherichia coli have justified their use in the production of genetically engineered vaccines. However, endotoxin contamination, plasmid vector instability, and the requirement for antibiotic supplementation are frequent bottlenecks in the successful production of recombinant proteins that are safe for industrial-scaled applications. To overcome these drawbacks, we focused on interrupting the expression of several key genes involved in the synthesis of lipopolysaccharide (LPS), an endotoxin frequently responsible for toxicity in recombinant proteins, to eliminate endotoxin contamination and produce better recombinant proteins with E. coli. Results Of 8 potential target genes associated with LPS synthesis, we successfully constructed 7 LPS biosynthesis-defective recombinant strains to reduce the production of LPS. The endotoxin residue in the protein products from these modified E. coli strains were about two orders of magnitude lower than that produced by the wild-type strain. Further, we found that 6 loci—lpxM, lpxP, lpxL, eptA, gutQ and kdsD—were suitable for chromosomal integrated expression of HPV L1 protein. We found that a single copy of the expression cassette conferred stable expression during long-term antibiotic-free cultivation as compared with the more variable protein production from plasmid-based expression. In large-scale fermentation, we found that recombinant strains bearing 3 to 5 copies of the expression cassette had 1.5- to 2-fold higher overall expression along with lower endotoxin levels as compared with the parental ER2566 strain. Finally, we engineered and constructed 9 recombinant E. coli strains for the later production of an HPV 9-valent capsid protein with desirable purity, VLP morphology, and antigenicity. Conclusions Reengineering the LPS synthesis loci in the E. coli ER2566 strain through chromosomal integration of expression cassettes has potential uses for the production of a 9-valent HPV vaccine candidate, with markedly reduced residual endotoxin levels. Our results offer a new strategy for recombinant E. coli strain construction, engineering, and the development of suitable recombinant protein drugs.

Funder

National Natural Science Foundation of China

Health Education Joint Project of Fujian Province

The Principal Fund

Xiamen Major Science and Technology Project

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3