Production of neoagarooligosaccharides by probiotic yeast Saccharomyces cerevisiae var. boulardii engineered as a microbial cell factory

Author:

Jin Yerin,Yu Sora,Liu Jing-Jing,Yun Eun Ju,Lee Jae Won,Jin Yong-Su,Kim Kyoung HeonORCID

Abstract

Abstract Background Saccharomyces cerevisiae var. boulardii is a representative probiotic yeast that has been widely used in the food and pharmaceutical industries. However, S. boulardii has not been studied as a microbial cell factory for producing useful substances. Agarose, a major component of red macroalgae, can be depolymerized into neoagarooligosaccharides (NAOSs) by an endo-type β-agarase. NAOSs, including neoagarotetraose (NeoDP4), are known to be health-benefiting substances owing to their prebiotic effect. Thus, NAOS production in the gut is required. In this study, the probiotic yeast S. boulardii was engineered to produce NAOSs by expressing an endo-type β-agarase, BpGH16A, derived from a human gut bacterium Bacteroides plebeius. Results In total, four different signal peptides were compared in S. boulardii for protein (BpGH16A) secretion for the first time. The SED1 signal peptide derived from Saccharomyces cerevisiae was selected as optimal for extracellular production of NeoDP4 from agarose. Expression of BpGH16A was performed in two ways using the plasmid vector system and the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system. The production of NeoDP4 by engineered S. boulardii was verified and quantified. NeoDP4 was produced by S. boulardii engineered using the plasmid vector system and CRISPR-Cas9 at 1.86 and 0.80 g/L in a 72-h fermentation, respectively. Conclusions This is the first report on NAOS production using the probiotic yeast S. boulardii. Our results suggest that S. boulardii can be considered a microbial cell factory to produce health-beneficial substances in the human gut. Graphical abstract

Funder

National Research Foundation of Korea

Ministry of Oceans and Fisheries, Korea

Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3