De novo biosynthesis of p-coumaric acid and caffeic acid from carboxymethyl-cellulose by microbial co-culture strategy

Author:

Cai Miao,Liu Jiayu,Song Xiaofei,Qi Hang,Li Yuanzi,Wu Zhenzhou,Xu Haijin,Qiao Mingqiang

Abstract

Abstract Background Aromatic compounds, such as p-coumaric acid (p-CA) and caffeic acid, are secondary metabolites of various plants, and are widely used in diet and industry for their biological activities. In addition to expensive and unsustainable methods of plant extraction and chemical synthesis, the strategy for heterologous synthesis of aromatic compounds in microorganisms has received much attention. As the most abundant renewable resource in the world, lignocellulose is an economical and environmentally friendly alternative to edible, high-cost carbon sources such as glucose. Results In the present study, carboxymethyl-cellulose (CMC) was utilized as the sole carbon source, and a metabolically engineered Saccharomyces cerevisiae strain SK10-3 was co-cultured with other recombinant S. cerevisiae strains to achieve the bioconversion of value-added products from CMC. By optimizing the inoculation ratio, interval time, and carbon source content, the final titer of p-CA in 30 g/L CMC medium was increased to 71.71 mg/L, which was 155.9-fold higher than that achieved in mono-culture. The de novo biosynthesis of caffeic acid in the CMC medium was also achieved through a three-strain co-cultivation. Caffeic acid production was up to 16.91 mg/L after optimizing the inoculation ratio of these strains. Conclusion De novo biosynthesis of p-CA and caffeic acid from lignocellulose through a co-cultivation strategy was achieved for the first time. This study provides favorable support for the biosynthesis of more high value-added products from economical substrates. In addition, the multi-strain co-culture strategy can effectively improve the final titer of the target products, which has high application potential in the field of industrial production.

Funder

Tianjin Key Research Program of Application Foundation and Advanced Technology

Ph.D. Candidate Research Innovation Fund of Nankai University

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3