‘Small volume—big problem’: culturing Yarrowia lipolytica in high-throughput micro-formats

Author:

Celińska EwelinaORCID,Gorczyca MariaORCID

Abstract

AbstractWith the current progress in the ‘design’ and ‘build’ stages of the ‘design-build-test-learn’ cycle, many synthetic biology projects become ‘test-limited’. Advances in the parallelization of microbes cultivations are of great aid, however, for many species down-scaling leaves a metabolic footprint. Yarrowia lipolytica is one such demanding yeast species, for which scaling-down inevitably leads to perturbations in phenotype development. Strictly aerobic metabolism, propensity for filamentation and adhesion to hydrophobic surfaces, spontaneous flocculation, and high acidification of media are just several characteristics that make the transfer of the micro-scale protocols developed for the other microbial species very challenging in this case. It is well recognized that without additional ‘personalized’ optimization, either MTP-based or single-cell-based protocols are useless for accurate studies of Y. lipolytica phenotypes. This review summarizes the progress in the scaling-down and parallelization of Y. lipolytica cultures, highlighting the challenges that occur most frequently and strategies for their overcoming. The problem of Y. lipolytica cultures down-scaling is illustrated by calculating the costs of micro-cultivations, and determining the unintentionally introduced, thus uncontrolled, variables. The key research into culturing Y. lipolytica in various MTP formats and micro- and pico-bioreactors is discussed. Own recently developed and carefully pre-optimized high-throughput cultivation protocol is presented, alongside the details from the optimization stage. We hope that this work will serve as a practical guide for those working with Y. lipolytica high-throughput screens.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3