Abstract
Abstract
Background
Glucose transporters play an important role in the fermentation of citric acid. In this study, a high-affinity glucose transporter (HGT1) was identified and overexpressed in the industrial strain A. niger CGMCC 10142. HGT1-overexpressing strains using the PglaA and Paox1 promoters were constructed to verify the glucose transporter functions.
Result
As hypothesized, the HGT1-overexpressing strains showed higher citric acid production and lower residual sugar contents. The best-performing strain A. niger 20-15 exhibited a reduction of the total sugar content and residual reducing sugars by 16.5 and 44.7%, while the final citric acid production was significantly increased to 174.1 g/L, representing a 7.3% increase compared to A. niger CGMCC 10142. Measurement of the mRNA expression levels of relevant genes at different time-points during the fermentation indicated that in addition to HGT1, citrate synthase and glucokinase were also expressed at higher levels in the overexpression strains.
Conclusion
The results indicate that HGT1 overexpression resolved the metabolic bottleneck caused by insufficient sugar transport and thereby improved the sugar utilization rate. This study demonstrates the usefulness of the high-affinity glucose transporter HGT1 for improving the citric acid fermentation process of Aspergillus niger CGMCC 10142.
Funder
National Natural Science Foundation of China
Shandong Provincial Key R&D Project
Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Reference43 articles.
1. Jernejc K, Legiša M. A drop of intracellular pH stimulates citric acid accumulation by some strains of Aspergillus niger. J Biotechnol. 2004;112:289–97.
2. Dhillon GS, Brar SK, Verma MP, Tyagi RD. Recent advances in citric acid bio-production and recovery. Food Bioprocess Tech. 2011;4:505–29.
3. Barman S, Sit N, Badwaik LS, Deka SC. Pectinase production by Aspergillus niger using banana (Musa balbisiana) peel as substrate and its effect on clarification of banana juice. J Food Sci Tech Mys. 2015;52:3579–89.
4. Pal A, Khanum F. Efficacy of xylanase purified from Aspergillus niger DFR-5 alone and in combination with pectinase and cellulase to improve yield and clarity of pineapple juice. J Food Sci Tech Mys. 2011;48:560–8.
5. Andersen MR, Salazar M, Schaap PJ, De Vondervoort PJIV, Culley DE, Thykaer J, Frisvad JC, Nielsen KF, Albang R, Albermann K. Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88. Genome Res. 2011;21:885–97.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献