Deformation monitoring and analysis of a long-span cable-stayed bridge during strong typhoons

Author:

Mao Jianxiao,Wang Hao,Xu Yichao,Li Hang

Abstract

AbstractDeformation monitoring of the girders and towers during strong winds or typhoons is vitally important for serviceability and safety assessment of in-service long-span bridges. Although some field measurements were carried out, our understanding on the features of the bridge deformation during high-speed winds is still limited; therefore, more monitoring-based studies are still required. In this study, the displacements of a long-span cable-stayed bridge during three typhoons are recorded by the Global Positioning System (GPS) in its Structural Health Monitoring (SHM) system. The monitored displacements are decomposed into static and dynamic components using the autoregressive moving average model. The outliers and the low-frequency colored noise in the dynamic components are then analyzed and eliminated. On that basis, the relationship between the static displacements and environmental factors, in terms of wind and temperature, is investigated. Afterwards, the variation of dynamic displacements of the bridge is analyzed with respect to the surrounding environments. Results show that the structural temperature is the major reason that changes the static deformation of the bridge. The dynamic deformation of the girder is mainly controlled by the in-situ wind speed. Nevertheless, the influence of structural temperature on dynamic deformation is mildly. Conclusions are aimed to provide a reference for wind resistant design and assessment of similar long-span bridges.

Funder

National Natural Science Foundation of China

The National Ten Thousand Talent Program for Young Top-Notch Talents

Jiangsu Provincial Key Research and Development Program

Publisher

Springer Science and Business Media LLC

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3