Temperature behavior of cable-stayed bridges. Part II — temperature actions by using unified analysis

Author:

Shan Yushi1ORCID,Jing Qiang2,Li Lingfang1ORCID,Gao Wenbo2,Xia Zili2,Xia Yong1

Affiliation:

1. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China

2. The Hong Kong‒Zhuhai‒Macao Bridge Authority, Zhuhai, Guangdong, China

Abstract

The temperature action of long-span cable-stayed bridges is complicated because of the high indeterminacy of their structure. Previous studies on the temperature behavior of bridges were either limited by finite sensors, failing to capture the accurate relation between the temperature field and temperature-induced responses, or constrained to a “divide-and-conquer” strategy, requiring considerable manual intervention and regarded as computationally inefficient. This study develops a unified approach to the investigation of thermal behaviors of cable-stayed bridges by integrating the heat-transfer analysis and structural analysis based on the same refined global 3D finite element model. The companion paper (Part I) investigates the temperature distribution, while this paper (Part II) focuses on temperature-induced responses. The temperature distribution data is automatically converted to thermal loads, and thermal elements are changed to structural elements to calculate the temperature-induced responses of the bridge. Results show that the effect of the temperature variation of cables is nonnegligible and should be taken into account during the structural analysis. The longitudinal displacement of the girder and the longitudinal displacement of the tower top are mainly influenced by the average girder temperature, the mid-span deflection and the cable stress are dominated by the cable temperature and average girder temperature, and the stress of the girder is controlled by the vertical temperature difference. The ratio of the thermal stress to the dead load stress of the girder can reach 96%. The calculated displacement and stress of the bridge agree well with the corresponding measurements, consequently verifying the effectiveness of the proposed unified approach to calculating temperature-induced responses.

Funder

National Key R&D Program

Key-Area Research and Development Program of Guangdong Province

RGC-GRF

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3