Identification of modal parameters of long-span bridges under various wind velocities

Author:

Lu Siying,Yan LeiORCID,He Xuhui,Guo Hui

Abstract

AbstractThe modal parameters identification of bridges under non-stationary environmental excitation has caught the attention of researchers. This paper studies the non-stationarity of wind velocity, and extracts the time-varying mean wind velocity based on a discrete wavelet transform and recursive quantitative analysis. The calculated turbulence intensity and turbulence integral scale under the non-stationary model are smaller than those under the stationary model, especially the turbulence integral scale. The empirical wavelet transform is used to identify the modal parameters of long-span bridges, and the power spectral density spectrum is proposed as a replacement for the Fourier spectrum as the basis of the frequency band selection. The bridge modal parameters are then compared using the covariance-driven stochastic subspace system identification method (SSI-COV) and the Hilbert transform method based on an improved empirical wavelet transform (EWT-HT). Both methods can accurately identify the modal frequency, and the absolute difference between these two methods is equal to 0.003 Hz. The wind velocity results in a change of less than 1% in the modal frequency. The absolute difference between the modal damping ratios identified using SSI-COV and EWT-HT is significant and can reach 0.587%. The modal damping ratios are positively correlated with the mean wind velocities, which aligns with the quasi-steady assumption. In addition, the applicability of SSI-COV and EWT-HT is also evaluated using the standard deviation, coefficient of variation, and range dispersion indicators. The results show that the EWT-HT is more applicable to the identification of the modal parameters of long-span bridges under non-stationary wind velocities.

Funder

National Natural Science Foundation of China

Innovation-Driven Project of Central South University

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3