Study on Abnormal Pattern Detection Method for In-Service Bridge Based on Lasso Regression

Author:

Zhong Huaqiang1,Hu Hao1,Hou Ning2,Fan Ziyuan2ORCID

Affiliation:

1. Zhejiang Engineering Center of Road and Bridge Intelligent Operation and Maintenance Technology, Hangzhou 310018, China

2. School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China

Abstract

The real-time operational safety of in-service bridges has received wide attention in recent years. By fully utilizing the health monitoring data of bridges, a structural abnormal pattern detection method based on data mining can be established to effectively ensure the safety of in-service bridges. This paper takes a large-span arch bridge as the research object, analyzes the time-based variation of the main monitoring data of the structure, establishes Lasso regression models for load characteristic indicators and vertical bending fundamental frequency of the structure under different time scales, and uses the residuals of the Lasso model to indicate the structural state and identify abnormal patterns. Firstly, the monitoring data of bridge structural temperature, girder end displacement, and girder acceleration were analyzed, and the interrelationships were studied to extract characteristic parameters of structural load characteristics and structural frequency. Then, the time-varying patterns of structural response were analyzed, and Lasso regression models and their regression variables were discussed based on monitoring data under two different time scales: daily cycle and annual cycle. The abnormal pattern detection method for bridge structures was developed. Finally, the effectiveness of this method was verified by taking the bridge deck pavement replacement as the abnormal pattern. The research results indicate that the proposed bridge structure abnormal pattern detection method based on Lasso regression can effectively monitor changes in the state of the bridge, and the residual dispersion of the model established on the annual cycle scale is relatively smaller than that on the daily cycle scale, resulting in better abnormal detection performance.

Funder

Zhejiang Engineering Center of Road and Bridge Intelligent Operation and Maintenance Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3