Vibration-based damage detection for bridges by deep convolutional denoising autoencoder

Author:

Shang Zhiqiang1,Sun Limin2ORCID,Xia Ye1ORCID,Zhang Wei3

Affiliation:

1. Department of Bridge Engineering, College of Civil Engineering, Tongji University, Shanghai, China

2. State Key Laboratory of Disaster Reduction in Civil Engineering, Department of Bridge Engineering, College of Civil Engineering, Tongji University, Shanghai, China

3. Fujian Key Laboratory of Green Building Technology, Fujian Academy of Building Research, Fuzhou, China

Abstract

One of the main challenges for structural damage detection using monitoring data is to acquire features that are sensitive to damages but insensitive to noise (e.g. sensor measurement noise) as well as environmental and operational effects (e.g. temperature effect). Inspired by the capabilities of deep learning methods in representation learning, various deep neural networks have been developed to obtain effective damage features from raw vibration data. However, most of the available deep neural networks are supervised, resulting in practical difficulties owing to the lack of damage labels. This article proposes a damage detection strategy based on an unsupervised deep neural network, referred to as deep convolutional denoising autoencoder, which accepts multi-dimensional cross-correlation functions as input. The strategy aims to extract damage features from field measurements of undamaged structures under the influence of noise and temperature uncertainties. In the proposed strategy, cross-correlation functions of vibration data are first calculated as basic features; then deep convolutional denoising autoencoder is developed to reconstruct cross-correlation functions from their noise-corrupted versions to extract desired features; exponentially weighted moving average control charts are finally established for these features to identify minor structural damages. The strategy is evaluated through a numerical simply supported beam model and an experimental continuous beam model. The mechanism of deep convolutional denoising autoencoder to extract damage features is interpreted by visualizing feature maps of convolutional layers in the encoder. It is found that these layers perform rough estimations of modal properties and preserve the damage information as the general trend of these properties in multiple extra frequency bands. The results show that the proposed strategy is competent for structural damage detection under the exposed environment and worth further exploring its capabilities in applications of real bridges.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3