Author:
Nieder Carsten,Andratschke Nicolaus,Astner Sabrina T
Abstract
AbstractSeveral experimental strategies of radiation-induced central nervous system toxicity prevention have recently resulted in encouraging data. The present review summarizes the background for this research and the treatment results. It extends to the perspectives of tissue regeneration strategies, based for example on stem and progenitor cells. Preliminary data suggest a scenario with individually tailored strategies where patients with certain types of comorbidity, resulting in impaired regeneration reserve capacity, might be considered for toxicity prevention, while others might be "salvaged" by delayed interventions that circumvent the problem of normal tissue specificity. Given the complexity of radiation-induced changes, single target interventions might not suffice. Future interventions might vary with patient age, elapsed time from radiotherapy and toxicity type. Potential components include several drugs that interact with neurodegeneration, cell transplantation (into the CNS itself, the blood stream, or both) and creation of reparative signals and a permissive microenvironment, e.g., for cell homing. Without manipulation of the stem cell niche either by cell transfection or addition of appropriate chemokines and growth factors and by providing normal perfusion of the affected region, durable success of such cell-based approaches is hard to imagine.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Oncology
Reference94 articles.
1. Van der Kogel AJ: Radiation-induced damage in the central nervous system: an interpretation of target cell responses. Br J Cancer. 1986, 53 (Suppl 7): 207-217.
2. Schultheiss TE, Kun LE, Ang KK, Stephens LC: Radiation response of the central nervous system. Int J Radiat Oncol Biol Phys. 1995, 31: 1093-1112. 10.1016/0360-3016(94)00655-5.
3. Ang KK, Jiang GL, Feng Y, Stephens LC, Tucker SL, Price RE: Extent and kinetics of recovery of occult spinal cord injury. Int J Radiat Oncol Biol Phys. 2001, 50: 1013-1020. 10.1016/S0360-3016(01)01599-1.
4. Nieder C, Grosu AL, Andratschke N, Molls M: Update of human spinal cord reirradiation tolerance based on additional data from 38 patients. Int J Radiat Oncol Biol Phys. 2006, 66: 1446-1449.
5. Raju U, Gumin GJ, Tofilon PJ: Radiation-induced transcription factor activation in the rat cerebral cortex. Int J Radiat Biol. 2005, 76: 1045-1053. 10.1080/09553000050111514.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献