Multimodal imaging with magnetization transfer and diffusion tensor imaging reveals evidence of myelin damage in children and youth treated for a brain tumor

Author:

Skocic Jovanka1,Richard Logan1,Ferkul Ashley1,Cox Elizabeth12,Tseng Julie1,Laughlin Suzanne34ORCID,Bouffet Eric56ORCID,Mabbott Donald James12ORCID

Affiliation:

1. Program in Neurosciences and Mental Health, Research Institute, The Hospital for Sick Children , Toronto, Ontario , Canada

2. Department of Psychology, University of Toronto , Toronto, Ontario , Canada

3. Diagnostic Imaging, The Hospital for Sick Children , Toronto, Ontario , Canada

4. Medical Imaging, University of Toronto , Toronto, Ontario , Canada

5. Division of Haematology/Oncology, The Hospital for Sick Children , Toronto, Ontario , Canada

6. Department of Paediatrics, University of Toronto , Toronto, Ontario , Canada

Abstract

Abstract Background The microstructural damage underlying compromise of white matter following treatment for pediatric brain tumors is unclear. We use multimodal imaging employing advanced diffusion tensor imaging (DTI) and magnetization transfer imaging (MTI) MRI methods to examine chronic microstructural damage to white matter in children and adolescents treated for pediatric brain tumor. Notably, MTI may be more sensitive to macromolecular content, including myelin, than DTI. Methods Fifty patients treated for brain tumors (18 treated with surgery ± chemotherapy and 32 treated with surgery followed by cranial–spinal radiation; time from diagnosis to scan ~6 years) and 45 matched healthy children completed both MTI and DTI scans. Voxelwise and region-of-interest approaches were employed to compare white matter microstructure metrics (magnetization transfer ratio (MTR); DTI— fractional anisotropy [FA], radial diffusivity [RD], axial diffusivity [AD], mean diffusivity [MD]) between patients and healthy controls. Results MTR was decreased across multiple white matter tracts in patients when compared to healthy children, P < .001. These differences were observed for both patients treated with radiation and those treated with only surgery, P < .001. We also found that children and adolescents treated for brain tumors exhibit decreased FA and increased RD/AD/MD compared to their healthy counterparts in several white matter regions, Ps < .02. Finally, we observed that MTR and DTI metrics were related to multiple white matter tracts in patients, Ps < .01, but not healthy control children. Conclusions Our findings provide evidence that the white matter damage observed in patients years after treatment of pediatric posterior fossa tumors, likely reflects myelin disruption.

Funder

Canadian Institutes of Health Research

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3