The in vivo study on the radiobiologic effect of prolonged delivery time to tumor control in C57BL mice implanted with Lewis lung cancer

Author:

Wang Xin,Xiong Xiao-Peng,Lu Jiade,Zhu Guo-Pei,He Shao-Qin,Hu Chao-Su,Ying Hong-Mei

Abstract

Abstract Background High-precision radiation therapy techniques such as IMRT or sterotactic radiosurgery, delivers more complex treatment fields than conventional techniques. The increased complexity causes longer dose delivery times for each fraction. The purpose of this work is to explore the radiobiologic effect of prolonged fraction delivery time on tumor response and survival in vivo. Methods 1-cm-diameter Lewis lung cancer tumors growing in the legs of C57BL mice were used. To evaluate effect of dose delivery prolongation, 18 Gy was divided into different subfractions. 48 mice were randomized into 6 groups: the normal control group, the single fraction with 18 Gy group, the two subfractions with 30 min interval group, the seven subfractions with 5 min interval group, the two subfractions with 60 min interval group and the seven subfractions with 10 min interval group. The tumor growth tendency, the tumor growth delay and the mice survival time were analyzed. Results The tumor growth delay of groups with prolonged delivery time was shorter than the group with single fraction of 18 Gy (P < 0.05). The tumor grow delay of groups with prolonged delivery time 30 min was longer than that of groups with prolonged delivery time 60 min P < 0.05). There was no significant difference between groups with same delivery time (P > 0.05). Compared to the group with single fraction of 18 Gy, the groups with prolonged delivery time shorten the mice survival time while there was no significant difference between the groups with prolonged delivery time 30 min and the groups with prolonged delivery time 60 min. Conclusions The prolonged delivery time with same radiation dose shorten the tumor growth delay and survival time in the mice implanted with Lewis lung cancer. The anti-tumor effect decreased with elongation of the total interfractional time.

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3