On the effect of dose delivery temporal domain on the biological effectiveness of central nervous system CyberKnife radiosurgery applications: theoretical assessment using the concept of biologically effective dose

Author:

Moutsatsos AORCID,Kouris P,Zoros MORCID,Athanasiou O,Koutsarnakis C,Pantelakos P,Pantelis EORCID

Abstract

Abstract Objective: The diversity in technical configuration between clinically available radiosurgery systems, results in accordingly diverse treatment times for the same physical dose prescription, spanning from several min to more than 1 h. This, combined with evidence supporting the impact of dose delivery temporal pattern on the bio-effectiveness of low-LET radiation treatments, challenges the ‘acute exposure’ assumption adopted clinically to estimate the biological outcome of a given treatment scheme under the concept of biologically effective dose (BED). Approach: In this work, the treatment plans of 30 patients underwent CyberKnife radiosurgery for vestibular schwannoma (VS), prescribing a marginal dose of 13 Gy to the tumor, were retrospectively reviewed and the corresponding dose distributions were resolved in the temporal domain. For this purpose, the dose delivery timeline for each treatment was calculated based on relevant treatment plan data and technical specifications of the CyberKnife system, while dosimetry data were independently acquired on a CT-based digital model of each patient using an in-house developed dose calculation algorithm. Main results: Results showed that CyberKnife delivers highly inhomogeneous dose rate distributions in the temporo-spatial domain. This influences the delivered BED levels due to alterations in the sublethal damage repair (SLR) occurring within the treatment session. Using a BED framework involving SLR effects, it was shown that each physical dose iso-surface is associated with a BEDslr range. For the patient cohort studied, a typical range of 2%, with respect to the mean BEDslr value was found at 1σ. Significance: The marginal BEDslr delivered to the tumor by the prescription dose iso-surface deteriorates with treatment time, involving both beam-on time and beam-off gaps. For treatment time, T, between 21 and 50 min, this can be expressed by BED slr ( Gy 2.47 ) = 0.35 ± 2.8 % T min + ( 76.74 ± 0.4 % ) . Compared to the acute exposure approach, a BED ‘loss’ of 21% is associated with the delivery of 13 Gy to the VS-tumor in 35 min.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3