Prostaglandin E2 sensitizes the cough reflex centrally via EP3 receptor-dependent activation of NaV 1.8 channels

Author:

Al-Kandery Al-Shaimaa A.,Rao Muddanna S.,El-Hashim Ahmed Z.ORCID

Abstract

Abstract Background Cough hypersensitivity is a major characteristic feature associated with several types of cough, including chronic cough, but its underlying mechanisms remain to be fully understood. Inflammatory mediators, such as prostaglandin E2 (PGE2), have been implicated in both peripheral induction and sensitization of the cough reflex. In this study, using a conscious guinea pig model of cough, we investigated whether PGE2 can sensitize the cough reflex via central actions and, if so, via which mechanisms. Methods All drugs were administered by intracerebroventricular (i.c.v.) route and whole-body plethysmograph set-up was used for both induction, using aerosolized citric acid (0.2 M), and recording of cough. Immunohistochemistry was performed to confirm the expression of NaV 1.8 channels in the nucleus tractus solitarius (nTS). Results We show that both PGE2 and the non-selective EP1/EP3 agonist, sulprostone, dose-dependently enhanced the citric acid-induced cough (P ≤ 0.001, P ≤ 0.01, respectively). Pretreatment with the EP1 antagonist, ONO-8130, did not affect the sulprostone-induced cough sensitization, whilst the EP3 antagonist, L-798,106, dose-dependently inhibited this effect (P ≤ 0.05). Furthermore, treatment with either the EP2 agonist, butaprost or the EP4 agonist, L-902,688, had no effect on cough sensitization. Additionally, pretreatment with either the TRPV1 antagonist, JNJ-17203212 or the TRPA1 antagonist, HC-030031, alone or in combination, nor with the NaV 1.1, 1.2, 1.3, 1.4, 1.6 and 1.7 channel blocker, tetrodotoxin, had any effect on the cough. In contrast, pretreatment with the NaV 1.8 antagonist, A-803467, dose-dependently inhibited this effect (P ≤ 0.05). Furthermore, NaV 1.8 channels were shown to be expressed in the nTS. Conclusion Collectively, our findings show that PGE2 sensitizes the cough reflex centrally via EP3 receptor-dependent activation of NaV 1.8 but independently of TRPV1,TRPA1 and TTX-sensitive sodium channel activation. These results indicate that PGE2 plays an important role in central sensitization of the cough reflex and suggest that central EP3 receptors and/or NaVv 1.8 channels may represent novel antitussive molecular targets. Graphical Abstract

Funder

rs

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3