Prediction of lung emphysema in COPD by spirometry and clinical symptoms: results from COSYCONET

Author:

Kellerer ChristinaORCID,Jörres Rudolf A.,Schneider Antonius,Alter Peter,Kauczor Hans-Ulrich,Jobst Bertram,Biederer Jürgen,Bals Robert,Watz Henrik,Behr Jürgen,Kauffmann-Guerrero Diego,Lutter Johanna,Hapfelmeier Alexander,Magnussen Helgo,Trudzinski Franziska C.,Welte Tobias,Vogelmeier Claus F.,Kahnert Kathrin

Abstract

Abstract Background Lung emphysema is an important phenotype of chronic obstructive pulmonary disease (COPD), and CT scanning is strongly recommended to establish the diagnosis. This study aimed to identify criteria by which physicians with limited technical resources can improve the diagnosis of emphysema. Methods We studied 436 COPD patients with prospective CT scans from the COSYCONET cohort. All items of the COPD Assessment Test (CAT) and the St George’s Respiratory Questionnaire (SGRQ), the modified Medical Research Council (mMRC) scale, as well as data from spirometry and CO diffusing capacity, were used to construct binary decision trees. The importance of parameters was checked by the Random Forest and AdaBoost machine learning algorithms. Results When relying on questionnaires only, items CAT 1 & 7 and SGRQ 8 & 12 sub-item 3 were most important for the emphysema- versus airway-dominated phenotype, and among the spirometric measures FEV1/FVC. The combination of CAT item 1 (≤ 2) with mMRC (> 1) and FEV1/FVC, could raise the odds for emphysema by factor 7.7. About 50% of patients showed combinations of values that did not markedly alter the likelihood for the phenotypes, and these could be easily identified in the trees. Inclusion of CO diffusing capacity revealed the transfer coefficient as dominant measure. The results of machine learning were consistent with those of the single trees. Conclusions Selected items (cough, sleep, breathlessness, chest condition, slow walking) from comprehensive COPD questionnaires in combination with FEV1/FVC could raise or lower the likelihood for lung emphysema in patients with COPD. The simple, parsimonious approach proposed by us might help if diagnostic resources regarding respiratory diseases are limited. Trial registration ClinicalTrials.gov, Identifier: NCT01245933, registered 18 November 2010, https://clinicaltrials.gov/ct2/show/record/NCT01245933.

Funder

Deutsche Zentrum für Lungenforschung

Bundesministerium für Bildung und Forschung

Technische Universität München

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3