How do deep-learning models generalize across populations? Cross-ethnicity generalization of COPD detection

Author:

D. Almeida SilviaORCID,Norajitra Tobias,Lüth Carsten T.,Wald Tassilo,Weru Vivienn,Nolden Marco,Jäger Paul F.,von Stackelberg Oyunbileg,Heußel Claus Peter,Weinheimer Oliver,Biederer Jürgen,Kauczor Hans-Ulrich,Maier-Hein Klaus

Abstract

Abstract Objectives To evaluate the performance and potential biases of deep-learning models in detecting chronic obstructive pulmonary disease (COPD) on chest CT scans across different ethnic groups, specifically non-Hispanic White (NHW) and African American (AA) populations. Materials and methods Inspiratory chest CT and clinical data from 7549 Genetic epidemiology of COPD individuals (mean age 62 years old, 56–69 interquartile range), including 5240 NHW and 2309 AA individuals, were retrospectively analyzed. Several factors influencing COPD binary classification performance on different ethnic populations were examined: (1) effects of training population: NHW-only, AA-only, balanced set (half NHW, half AA) and the entire set (NHW + AA all); (2) learning strategy: three supervised learning (SL) vs. three self-supervised learning (SSL) methods. Distribution shifts across ethnicity were further assessed for the top-performing methods. Results The learning strategy significantly influenced model performance, with SSL methods achieving higher performances compared to SL methods (p < 0.001), across all training configurations. Training on balanced datasets containing NHW and AA individuals resulted in improved model performance compared to population-specific datasets. Distribution shifts were found between ethnicities for the same health status, particularly when models were trained on nearest-neighbor contrastive SSL. Training on a balanced dataset resulted in fewer distribution shifts across ethnicity and health status, highlighting its efficacy in reducing biases. Conclusion Our findings demonstrate that utilizing SSL methods and training on large and balanced datasets can enhance COPD detection model performance and reduce biases across diverse ethnic populations. These findings emphasize the importance of equitable AI-driven healthcare solutions for COPD diagnosis. Critical relevance statement Self-supervised learning coupled with balanced datasets significantly improves COPD detection model performance, addressing biases across diverse ethnic populations and emphasizing the crucial role of equitable AI-driven healthcare solutions. Key Points Self-supervised learning methods outperform supervised learning methods, showing higher AUC values (p < 0.001). Balanced datasets with non-Hispanic White and African American individuals improve model performance. Training on diverse datasets enhances COPD detection accuracy. Ethnically diverse datasets reduce bias in COPD detection models. SimCLR models mitigate biases in COPD detection across ethnicities. Graphical Abstract

Funder

Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3