Leveraging transcriptomics to develop bronchopulmonary dysplasia endotypes: a concept paper

Author:

Moreira Alvaro G.,Arora Tanima,Arya Shreyas,Winter Caitlyn,Valadie Charles T.,Kwinta Przemko

Abstract

Abstract Impact Bronchopulmonary dysplasia has multiple definitions that are currently based on phenotypic characteristics. Using an unsupervised machine learning approach, we created BPD subclasses (e.g., endotypes) by clustering whole microarray data. T helper 17 cell differentiation was the most significant pathway differentiating the BPD endotypes. Introduction Bronchopulmonary dysplasia (BPD) is the most common complication of extreme prematurity. Discovery of BPD endotypes in an unbiased format, derived from the peripheral blood transcriptome, may uncover patterns underpinning this complex lung disease. Methods An unsupervised agglomerative hierarchical clustering approach applied to genome-wide expression of profiling from 62 children at day of life five was used to identify BPD endotypes. To identify which genes were differentially expressed across the BPD endotypes, we formulated a linear model based on least-squares minimization with empirical Bayes statistics. Results Four BPD endotypes (A, B,C,D) were identified using 7,319 differentially expressed genes. Across BPD endotypes, 5,850 genes had a p value < 0.05 after multiple comparison testing. Endotype A consisted of neonates with a higher gestational age and birthweight. Endotypes B-D included neonates between 25 and 26 weeks and a birthweight range of 640 to 940 g. Endotype D appeared to have a protective role against BPD compared to Endotypes B and C (36% vs. 62% vs. 60%, respectively). The most significant pathway focused on T helper 17 cell differentiation. Conclusion Bioinformatic analyses can help identify BPD endotypes that associate with clinical definitions of BPD.

Funder

Parker B. Francis (AM); National Institutes of Health (NIH) Eunice Kennedy Shriver National Institute of Child Health and Human Development

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3