Affiliation:
1. Division of Neonatology, Department of Pediatrics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
2. Division of Neonatal-Perinatal Medicine, Dayton Children’s Hospital, Dayton, OH 45404, USA
Abstract
Bronchopulmonary dysplasia (BPD), a chronic lung disease predominantly affecting premature infants, poses substantial clinical challenges. This review delves into the promise of biomedical informatics (BMI) in reshaping BPD research and care. We commence by highlighting the escalating prevalence and healthcare impact of BPD, emphasizing the necessity for innovative strategies to comprehend its intricate nature. To this end, we introduce BMI as a potent toolset adept at managing and analyzing extensive, diverse biomedical data. The challenges intrinsic to BPD research are addressed, underscoring the inadequacies of conventional approaches and the compelling need for data-driven solutions. We subsequently explore how BMI can revolutionize BPD research, encompassing genomics and personalized medicine to reveal potential biomarkers and individualized treatment strategies. Predictive analytics emerges as a pivotal facet of BMI, enabling early diagnosis and risk assessment for timely interventions. Moreover, we examine how mobile health technologies facilitate real-time monitoring and enhance patient engagement, ultimately refining BPD management. Ethical and legal considerations surrounding BMI implementation in BPD research are discussed, accentuating issues of privacy, data security, and informed consent. In summation, this review highlights BMI’s transformative potential in advancing BPD research, addressing challenges, and opening avenues for personalized medicine and predictive analytics.
Funder
Parker B. Francis; National Institutes of Health (NIH) Eunice Kennedy Shriver National Institute of Child Health and Human Development
NIH National Heart Lung and Blood Institute